Hydrological Cycle in the Arabian Sea Region from GRACE/GRACE-FO Missions and ERA5 Data
- Boulahia, Ahmed Kamel 1
- García-García, David 1
- Trottini, Mario 2
- Sayol, Juan-Manuel 1
- Vigo, M. Isabel 1
- 1 Applied Mathematics Department, University of Alicante, 03690 Alicante, Spain
- 2 Mathematics Department, University of Alicante, 03690 Alicante, Spain
ISSN: 2072-4292
Year of publication: 2024
Volume: 16
Issue: 19
Pages: 3577
Type: Article
More publications in: Remote Sensing
Sustainable development goals
Abstract
The Arabian Gulf, a semi-enclosed basin in the Middle East, connects to the Indian Oceanthrough the Strait of Hormuz and is surrounded by seven arid countries. This study examinesthe water cycle of the Gulf and its surrounding areas using data from the GRACE and GRACEFollow-On missions, along with ERA5 atmospheric reanalysis data, from 05/2002 to 05/2017 andfrom 07/2018 to 12/2023. Our findings reveal a persistent water deficit due to high evaporation rates,averaging 370 ± 3 km3/year, greatly surpassing precipitation, which accounts for only 15% of theevaporative loss. Continental runoff provides one-fifth of the needed water, while the remainingdeficit, approximately 274 ± 10 km3/year, is balanced by net inflow of saltwater from the IndianOcean. Seasonal variations show the lowest net inflow of 26 ± 49 km3/year in March and the highestof 586 ± 53 km3/year in November, driven by net evaporation, continental input, and changes in theGulf’s water budget. This study highlights the complex hydrological dynamics influenced by climatepatterns and provides a baseline for future research in the region, which will be needed to quantifythe expected changes in the hydrological cycle due to climate change.
Bibliographic References
- Vasou, (2020), Ocean Dyn., 70, pp. 1053, 10.1007/s10236-020-01384-2
- Hassanzadeh, (2012), Oceanol. Hydrobiol. Stud., 41, pp. 85, 10.2478/s13545-012-0010-6
- Lattemann, (2008), Desalination, 220, pp. 1, 10.1016/j.desal.2007.03.009
- Oki, (1998), Earth Interact., 2, pp. 1, 10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2
- Sultan, (1996), Cont. Shelf Res., 16, pp. 1521, 10.1016/0278-4343(95)00086-0
- Durgadoo, (2017), J. Geophys. Res. Oceans, 122, pp. 3481, 10.1002/2016JC012676
- Sheehan, (2020), Geophys. Res. Lett., 47, pp. e2020GL087773, 10.1029/2020GL087773
- Ghazi, (2017), Open J. Mar. Sci., 7, pp. 169, 10.4236/ojms.2017.71013
- Pous, (2004), J. Geophys. Res., 109, pp. C12037
- Morvan, (2021), J. Geophys. Res. Oceans, 126, pp. e2019JC015983, 10.1029/2019JC015983
- Johns, (2003), J. Geophys. Res., 108, pp. 3391
- Held, (2006), J. Clim., 19, pp. 5686, 10.1175/JCLI3990.1
- Huntington, (2006), J. Hydrol., 319, pp. 83, 10.1016/j.jhydrol.2005.07.003
- Greve, (2014), Nat. Geosci., 7, pp. 716, 10.1038/ngeo2247
- Durack, (2012), Science, 336, pp. 455, 10.1126/science.1212222
- Markonis, (2019), J. Geophys. Res. Atmos., 124, pp. 11175, 10.1029/2019JD030855
- Core Writing Team, Lee, H., and Romero, J. (2023). Summary for Policymakers. Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.
- Vigo, (2020), Earth Syst. Dynam., 11, pp. 1089, 10.5194/esd-11-1089-2020
- Vigo, (2022), Clim. Dyn., 59, pp. 1919, 10.1007/s00382-022-06188-2
- Boulahia, A.K., García-García, D., Vigo, M.I., Trottini, M., and Sayol, J.-M. (2022). The Water Cycle of the Baltic Sea Region From GRACE/GRACE-FO Missions and ERA5 Data. Front. Earth Sci., 10.
- Ma, (2024), J. Hydrol., 630, pp. 130607, 10.1016/j.jhydrol.2024.130607
- Politis, (1994), J. Am. Stat. Assoc., 89, pp. 1303, 10.1080/01621459.1994.10476870
- Patton, (2009), Economet. Rev., 28, pp. 372, 10.1080/07474930802459016
- Brockwell, P.J., and Davis, R.A. (2010). Introduction to Time Series and Forecasting, Springer. [2nd ed.].
- Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., and Bechtolg, P. (2018). Operational Global Re-Analysis: Progress, Future Directions, and Synergies with NWP, European Centre for Medium Range Weather Forecasts.
- Copernicus Climate Change Service (C3S) (2024, June 11). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form.
- Chao, (2016), J. Geod., 90, pp. 807, 10.1007/s00190-016-0912-y
- Save, H. (2019). CSR GRACE RL06 Mascon Solutions. Texas Data Repository Dataverse, Texas Digital Library.
- Save, (2016), J. Geophys. Res.-Solid, 121, pp. 7547, 10.1002/2016JB013007
- Center for Space Research, University of Texas at Austin (2024, June 11). GRACE/GRACE-FO. Available online: https://www2.csr.utexas.edu/grace/.
- Cheng, (2017), J. Geod., 91, pp. 897, 10.1007/s00190-016-0995-5
- Swenson, (2008), J. Geophys. Res., 113, pp. B08410
- Sun, (2016), J. Geophys. Res. Solid Earth, 121, pp. 8352, 10.1002/2016JB013073
- Peltier, (2018), J. Geophys. Res.-Solid, 123, pp. 2019, 10.1002/2016JB013844
- Campos, E.J.D., Gordon, A.L., Kjerfve, B., Vieira, F., and Cavalcante, G. (2020). Freshwater budget in the Persian (Arabian) Gulf and exchanges at the Strait of Hormuz. PLoS ONE, 15.
- Hunt, (2023), Clim. Dyn., 60, pp. 2389, 10.1007/s00382-022-06450-7
- Climate Prediction Center, National Weather Service, NOAA (2024, June 11). North Atlantic Oscillation (NAO), Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml.
- Kumar, K.N., Abouelmagd, A., McCabe, M.F., and Molini, A. (May, January 27). Precipitation over the Arabian Peninsula: Global Forcing and Tele-connections. Proceedings of the European Geosciences Union (EGU) General Assembly, Vienna, Austria.
- NOAA Physical Sciences Laboratory (2024, June 11). Oceanic Niño Index (ONI), Available online: https://psl.noaa.gov/enso/data.html.
- Ropelewski, (1987), Mon. Wea. Rev., 115, pp. 1606, 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
- Dai, (2000), Geophys. Res. Lett., 27, pp. 1283, 10.1029/1999GL011140
- Ouarda, (2014), J. Geophys. Res. Atmos., 119, pp. 10313
- Ouarda, (2016), Clim. Dyn., 47, pp. 2443, 10.1007/s00382-016-2973-2
- Sandeep, (2018), J. Geophys. Res. Atmos., 123, pp. 198, 10.1002/2017JD027263
- Black, (2003), Mon. Wea. Rev., 131, pp. 74, 10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2
- Ashok, (2001), Geophys. Res. Lett., 28, pp. 4499, 10.1029/2001GL013294
- Ashok, (2003), Geophys. Res. Lett., 30, pp. 1821, 10.1029/2003GL017926
- Pourasghar, (2012), Clim. Dyn., 39, pp. 2329, 10.1007/s00382-012-1357-5
- NOAA Physical Sciences Laboratory (2024, June 11). Indian Ocean Dipole Mode Index (DMI), Available online: https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data.
- Meyers, (2007), J. Clim., 20, pp. 2872, 10.1175/JCLI4152.1
- Vinayachandran, (2009), Curr. Trends Sci., 46, pp. 569
- Jiang, (2023), Clim. Dyn., 61, pp. 1089, 10.1007/s00382-022-06583-9
- (2007), Rev. Geophys., 45, pp. RG3003
- Zhang, (2019), Clim. Dyn., 52, pp. 257, 10.1007/s00382-018-4135-1
- Entekhabi, (2015), J. Geophys. Res. Atmos., 120, pp. 1637, 10.1002/2014JD022341
- Chao, (1992), J. Geophys. Res., 97, pp. 11219, 10.1029/92JC00841
- Xue, (2015), J. Clim., 28, pp. 5041, 10.1175/JCLI-D-14-00189.1
- Campos, (2022), Reg. Stud. Mar. Sci., 52, pp. 102336