Optimización del registro en tiempo real de sensor de fuerza

  1. Sempere, José Manuel 1
  2. Gracia, Desirée Irene 2
  3. Azorín, José María 2
  4. Úbeda, Andrés 1
  5. Iáñez Martínez, Eduardo 2
  1. 1 Human Robotics Group, Universidad de Alicante
  2. 2 Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche
Journal:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Year of publication: 2024

Issue: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10934 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

Abstract

The study addresses the need to quantify surface pressure with low latency in data transmission. Using the FSR 406 resistive force sensor and the ESP32 microcontroller, an architecture has been developed to optimize data sending and recording. Thearchitecture includes triggers activation based on voltage thresholds or push buttons, allowing precise synchronization between devices. The system sends data one by one or in blocks of strings, ensuring the integrity and continuity of the information. In addition, examples are shown where effective synchronization is achieved, facilitating the comparison of surface pressure withother physiological signals without generating time lags. This study optimizes data recording and transmission, improving accuracy and efficiency in physiological and biomechanical applications and demonstrating a robust architecture for synchronizationand analysis of multiple devices.

Bibliographic References

  • Agarwal, R., Kumar, A., Yadav, S., 2022. Precision Measurements in Healthcare Systems and Devices. Springer Nature Singapore, Singapore, pp. 1–10. DOI: 10.1007/978-981-19-1550-596−1
  • Babiuch, M., Foltynek, P., Smutny, P., 5 2019. Using the esp32 microcontroller for data processing. Proceedings of the 2019 20th International Carpathian Control Conference, ICCC 2019. DOI: 10.1109/CarpathianCC.2019.8765944 DOI: https://doi.org/10.1109/CarpathianCC.2019.8765944
  • Electronics, I., 2024. Fsr 400 series data sheet. https://cdn.sparkfun.com/assets/c/4/6/8/b/2010-10-26-DataSheet-FSR406-Layout2.pdf.
  • Foltynek, P., Babiuch, M., Suránek, P., 2019. Measurement and data processing from internet of things modules by dual-core application using esp32 board. Measurement and Control 52 (7-8), 970–984. DOI: 10.1177/0020294019857748 DOI: https://doi.org/10.1177/0020294019857748
  • Giovanelli, D., Farella, E., 2016. Force sensing resistor and evaluation of technology for wearable body pressure sensing. Journal of Sensors 2016. DOI: 10.1155/2016/9391850 DOI: https://doi.org/10.1155/2016/9391850
  • Gracia, D. I., Ortiz, M., Candela, T., Iáñez, E., Sánchez, R. M., Díaz, C., Azorín, J. M., 6 2023. Design and evaluation of a potential non-invasive neurostimulation strategy for treating persistent anosmia in post-covid-19 patients. Sensors 2023, Vol. 23, Page 5880 23, 5880. DOI: 10.3390/S23135880 DOI: https://doi.org/10.3390/s23135880
  • Kareem, H., Dunaev, D., 5 2021. The working principles of esp32 and analytical comparison of using low-cost microcontroller modules in embedded systems design. 2021 4th International Conference on Circuits, Systems and Simulation, ICCSS 2021, 130–135. DOI: 10.1109/ICCSS51193.2021.9464217 DOI: https://doi.org/10.1109/ICCSS51193.2021.9464217
  • Sadun, A. S., Jalani, J., Sukor, J. A., 2016. Force Sensing Resistor (FSR): a brief overview and the low-cost sensor for active compliance control. In: Jiang, X., Chen, G., Capi, G., Ishll, C. (Eds.), First International Workshop on Pattern Recognition. Vol. 10011. International Society for Optics and Photonics, SPIE, p. 1001112. DOI: 10.1117/12.2242950 DOI: https://doi.org/10.1117/12.2242950