Evaluación de propiedades mecánicas de compuestos manufacturados a partir de contenedores de Tetra Pak® reciclados
- Macías Gallego, Sebastián 1
- Guzmán Aponte, Álvaro
- Buitrago Sierra, Robison 2
- Santa Marín, Juan Felipe 2
-
1
Universidad Nacional de Colombia
info
- 2 Instituto Tecnológico Metropolitano de Medellín
ISSN: 2248-7638, 0123-921X
Año de publicación: 2020
Título del ejemplar: October - December
Volumen: 24
Número: 66
Páginas: 36-46
Tipo: Artículo
Otras publicaciones en: Tecnura: Tecnología y Cultura Afirmando el Conocimiento
Resumen
Contexto: Tetra Pak® es un material común que se utiliza para recipientes de alimentos. Actualmente, esos contenedores se reciclan mediante la separación física de las fibras de celulosa a través de un proceso de hidropulpeado, pero a veces no es económicamente viable separar los componentes individuales. En este trabajo, se evaluó un proceso alternativo para obtener materiales compuestos de Tetra Pak® reciclado. Metodología: Inicialmente, los contenedores de Tetra Pak® usados se recolectaron y cortaron en trozos pequeños en el laboratorio. Después, los contenedores se prensaron en caliente para obtener laminados en una prensa hidráulica manual utilizando diferentes configuraciones. Después de obtener los materiales compuestos, se cortaron las muestras y se evaluó su resistencia a la tracción (ASTM D3039). El análisis de fallas de las muestras fue realizado por FE-SEM para identificar problemas relacionados con el procesamiento y para comprender las diferencias en las propiedades mecánicas. Resultados: Los resultados mostraron que la menor resistencia a la tracción era de 9,5 MPa (muestras de tipo I). La mayor resistencia a la tracción fue de 37,4 MPa para muestras de tipo III. Conclusiones: Los resultados de las pruebas mecánicas permitieron concluir que el material se puede utilizar para fines no estructurales en la industria de la construcción. El análisis de fallas mostró que el desprendimiento de la fibra es el mecanismo más importante en las muestras de tipo I. Para las muestras de tipo III, la fractura se produjo por una secuencia de fallas interlaminares.
Referencias bibliográficas
- Ali, H., & Nystrom, T. (1995). Method and apparatus for separating paper fiber and plastics from mixed waste material and products obtained thereby (Patent No. 5390860).
- Amuthakkannan, P., Manikandan, V., Winowlin Jappes, J. T., & Uthayakumar, M. (2013). Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Materials Physics and Mechanics, 16(2), 107–117.
- Ayrilmis, N., Kaymakci, A., Akbulut, T., & Elmas, G. M. (2013). Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 47, 150–154.
- https://doi.org/10.1016/j.compositesb.2012.10.019
- Bekhta, P., Lyutyy, P., Hiziroglu, S., & Ortynska, G. (2016). Properties of Composite Panels Made from Tetra-Pak and Polyethylene Waste Material. Journal of Polymers and the Environment, 24(2), 159–165. https://doi.org/10.1007/s10924-016-0758-7
- Caraschi, J. C., & Leão, A. L. (2003). Compósitos de embalagens cartonadas com polipropileno. 7o Congresso Brasileiro de Polímeros, 178–179.
- Ebadi, M., Farsi, M., Narchin, P., & Madhoushi, M. (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites. Journal of Thermoplastic Composite Materials, 29(12), 1601-1610. https://doi.org/10.1177/0892705715618745
- Galvis Fuentes, C. J., & Villabona Arguello, J. C. (2016). Estudio de factibilidad para recuperación del Tetra Pak con uso estructural. [Tesis de pregrado]. Universidad Industrial de Santander (UIS). Bucaramanga, Colombia. http://noesis.uis.edu.co/handle/123456789/15720
- George, J., Bhagawan, S. S., Prabhakaran, N., & Thomas, S. (1995). Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. Journal of Applied Polymer Science, 57(7), 843–854. https://doi.org/10.1002/app.1995.070570708
- Greenhalgh, E. (2009). Fibre-dominated failures of polymer composites. In Failure Analysis and Fractography of Polymer Composites (pp. 107–163). Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1533/9781845696818.107
- Hidalgo, M., Muñoz, M., & Quintana, K. (2011). Desempeño mecánico del compuesto polietileno aluminio reforzado con agro fibras continuas de fique. Revista Latinoamericana de Metalurgia y Materiales, 2(2), 134–137.
- Hidalgo, M., Muñoz, M., & Quintana, K. (2012). Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional. Revista Latinoamericana de Metalurgia y Materiales, 32(1), 89–95.
- Hidalgo-Salazar, M. A., Mina, J. H., & Herrera-Franco, P. J. (2013a). The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Composites Part B-Engineering, 55, 345–351. https://doi.org/DOI 10.1016/j.compositesb.2013.06.032
- Hidalgo-Salazar, M., Neves, L., & Baena, F. (2013b). Posibilidades de fabricación con el polietileno aluminio obtenido del reciclaje de envases multicapas Possibilities of fabrication of aluminium polyethylene obtained from multilayer package recycling. Informador Técnico, p 100-109. https://doi.org/https://doi.org/10.23850/22565035.51
- Hitchon, J. W., & Phillips, D. C. (1979). The dependence of the strength of carbon fibres on length. Fibre Science and Technology, 12(3), 217–233. https://doi.org/10.1016/0015-0568(79)90032-0
- Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2017). Effect of Wood Fibers on the Rheological and Mechanical Properties of Polystyrene/Wood Composites. Journal of Wood Chemistry and Technology, 37(4), 251–260. https://doi.org/10.1080/02773813.2016.1272127
- Lopes, C. M. A., & Felisberti, M. I. (2006). Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of Applied Polymer Science, 101(5), 3183–3191. https://doi.org/10.1002/app.23406
- Martínez-López, Y., Fernández-Concepción, R. R., Álvarez-Lazo, D. A., García-González, M., & Martínez-Rodríguez, E. (2014). Evaluación de las propiedades físico-mecánicas de los tableros de madera plástica producidos en Cuba respecto a los tableros convencionales. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(3), 227–236. https://doi.org/10.5154/r.rchscfa.2014.02.003
- Moreno, D. D. P., & Saron, C. (2017). Low-density polyethylene waste/recycled wood composites. Composite Structures, 176, 1152–1157. https://doi.org/10.1016/j.compstruct.2017.05.076
- Pamungkas, A. F., Ariawan, D., Surojo, E., & Triyono, J. (2018). Influence of fiber length on flexural and impact properties of Zalacca Midrib fiber/HDPE by compression molding. AIP Conference Proceedings, 1931. https://doi.org/10.1063/1.5024120
- Paula, M. M. da S., Rodrigues, F. B. B. M., Bernardin, A. M., Fiori, M. A., & Angioletto, E. (2005). Characterization of aluminized polyethylene blends via mechanical recycling. Materials Science and Engineering: A, 403(1–2), 37–41. https://doi.org/10.1016/j.msea.2005.05.060
- Quintero, M., Rodríguez, P., Rubio, J., Jaramillo, L., & Nuñez-Moreno, F. (2017). Bending and compression characterization of hollow structural elements made of recycled Tetra Pak®-Based Boards (RTPBB) and an approximated calculation of the carbon footprint involved in their production. Revista Ingeniería de Construcción, 32(3), 131–148. https://doi.org/10.4067/S0718-50732017000300131
- Rhamin, H., Madhoushi, M., Ebrahimi, A., & Faraji, F. (2013). Effect of resin content, press time and overlaying on physical and mechanical properties of carton board made from recycled beverage carton and MUF resin. Life Science Journal, 10(SUPPL.4), 613–619.
- Salamanca, J., & Vaca, J. (2017). Caracterización de un material compuesto de TetraPak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor. Ingenio Magno, 8(1), 132–147.
- Silva, K. C. P. da, Campos, A. T., Yanagi Junior, T., Cecchin, D., Lourençoni, D., & Ferreira, J. C. (2015). Reaproveitamento de resíduos de embalagens Tetra Pak-® em coberturas. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(1), 58–63. https://doi.org/10.1590/1807-1929/agriambi.v19n1p58-63
- Souza, A. M., Nascimento, M. F., Almeida, D. H., Lopes Silva, D. A., Almeida, T. H., Christoforo, A. L., & Lahr, F. A. R. (2018). Wood-based composite made of wood waste and epoxy-based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production, 193, 549–562. https://doi.org/10.1016/j.jclepro.2018.05.087
- Sun, X., & Zhang, Q. H. (2013). Study on the optimum hot-pressing process and surface decoration of waste Tetra Pak®/sawdust composite board. Advanced Materials Research, 710, 147–151. https://doi.org/10.4028/www.scientific.net/AMR.710.147
- Turrado, J., Dávalos, M. F., Fuentes, F. J., & Saucedo, A. R. (2012). Envases de Cartón para Líquidos como Fuente de Fibra Secundaria. Información Tecnológica, 23(3), 59–66. https://doi.org/10.4067/S0718-07642012000300008
- Universitat de Barcelona, n.d. Materials - Polietileno de baja densidad. Retrieved from: .
- Valim, F. C. F., Silveira, D. C., Costa, M. L., Pereira, M. dos S., & Botelho, E. C. (2015). Estudo das propriedades morfológicas, térmicas e mecânicas do compósito particulado de alumínio e polietileno de baixa densidade reciclados. Revista Materia, 20(4), 852–865. https://doi.org/10.1590/S1517-707620150004.0092
- Xia, Q. S., Boyce, M. C., & Parks, D. M. (2002). A constitutive model for the anisotropic elastic-plastic deformation of paper and paperboard. International Journal of Solids and Structures, 39(15), 4053–4071. https://doi.org/10.1016/S0020-7683(02)00238-X
- Yadav, S. M., & Yusoh, K. Bin. (2015). Mechanical and Physical Properties of Wood-Plastic Composites Made of Polypropylene, Wood Flour and Nanoclay. International Journal of Agriculture, Forestry and Plantation, 1, 52–58. http://ijafp.com/wp-content/uploads/2015/10/FR-10.pdf
- Yilgor, N., Köse, C., Terzi, E., Figen, A. K., Ibach, R., Kartal, S. N., & Pişkin, S. (2014). Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. BioResources, 9(3), 4784–4807. https://doi.org/10.15376/biores.9.3.4784-4807
- Zawadiak, J., Wojciechowski, S., Piotrowski, T., & Krypa, A. (2017). Tetra Pak® Recycling – Current Trends and New Developments. American Journal of Chemical Engineering, 5(3), 37–42. https://doi.org/10.11648/j.ajche.20170503.12