Evaluación de propiedades mecánicas de compuestos manufacturados a partir de contenedores de Tetra Pak® reciclados

  1. Macías Gallego, Sebastián 1
  2. Guzmán Aponte, Álvaro
  3. Buitrago Sierra, Robison 2
  4. Santa Marín, Juan Felipe 2
  1. 1 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

  2. 2 Instituto Tecnológico Metropolitano de Medellín
Journal:
Tecnura: Tecnología y Cultura Afirmando el Conocimiento

ISSN: 2248-7638 0123-921X

Year of publication: 2020

Issue Title: October - December

Volume: 24

Issue: 66

Pages: 36-46

Type: Article

DOI: 10.14483/22487638.16296 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Tecnura: Tecnología y Cultura Afirmando el Conocimiento

Abstract

Context: Tetra Pak® is a common material used for the production of food containers. Currently, those containers are recycled by physical separation of the cellulose fibers through a hydro pulped process, but sometimes separating the individual components is not economically viable. This work evaluates an al­ternative process to obtain composites from recycled Tetra Pak®. Methodology: Tetra Pak® used containers were co­llected and cut into small pieces at the laboratory. Then, the containers were hot-pressed to obtain sheets in a manual hydraulic press by using different confi­gurations. Samples were cut, and their tensile stren­gth was evaluated (ASTM D3039). Failure analysis of samples was carried out by FE-SEM to identify issues related to processing and to understand the differen­ces in mechanical properties. Results: The results showed that the lowest tensile strength was 9.5 MPa (type I sample) and the highest tensile strength was 37.4 MPa (type III sample). Conclusions: The results of mechanical tests show that this material can be used for non-structural purposes in the building industry. Failure analysis shows that fiber pull-out and delamination are the most impor­tant failure mechanisms in type I samples. For type III sample, failure was produced by a sequence of intralaminar fractures

Bibliographic References

  • Ali, H., & Nystrom, T. (1995). Method and apparatus for separating paper fiber and plastics from mixed waste material and products obtained thereby (Patent No. 5390860).
  • Amuthakkannan, P., Manikandan, V., Winowlin Jappes, J. T., & Uthayakumar, M. (2013). Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Materials Physics and Mechanics, 16(2), 107–117.
  • Ayrilmis, N., Kaymakci, A., Akbulut, T., & Elmas, G. M. (2013). Mechanical performance of composites based on wastes of polyethylene aluminum and lignocellulosics. Composites Part B: Engineering, 47, 150–154.
  • https://doi.org/10.1016/j.compositesb.2012.10.019
  • Bekhta, P., Lyutyy, P., Hiziroglu, S., & Ortynska, G. (2016). Properties of Composite Panels Made from Tetra-Pak and Polyethylene Waste Material. Journal of Polymers and the Environment, 24(2), 159–165. https://doi.org/10.1007/s10924-016-0758-7
  • Caraschi, J. C., & Leão, A. L. (2003). Compósitos de embalagens cartonadas com polipropileno. 7o Congresso Brasileiro de Polímeros, 178–179.
  • Ebadi, M., Farsi, M., Narchin, P., & Madhoushi, M. (2016). The effect of beverage storage packets (Tetra Pak™) waste on mechanical properties of wood–plastic composites. Journal of Thermoplastic Composite Materials, 29(12), 1601-1610. https://doi.org/10.1177/0892705715618745
  • Galvis Fuentes, C. J., & Villabona Arguello, J. C. (2016). Estudio de factibilidad para recuperación del Tetra Pak con uso estructural. [Tesis de pregrado]. Universidad Industrial de Santander (UIS). Bucaramanga, Colombia. http://noesis.uis.edu.co/handle/123456789/15720
  • George, J., Bhagawan, S. S., Prabhakaran, N., & Thomas, S. (1995). Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. Journal of Applied Polymer Science, 57(7), 843–854. https://doi.org/10.1002/app.1995.070570708
  • Greenhalgh, E. (2009). Fibre-dominated failures of polymer composites. In Failure Analysis and Fractography of Polymer Composites (pp. 107–163). Woodhead Publishing Series in Composites Science and Engineering. https://doi.org/10.1533/9781845696818.107
  • Hidalgo, M., Muñoz, M., & Quintana, K. (2011). Desempeño mecánico del compuesto polietileno aluminio reforzado con agro fibras continuas de fique. Revista Latinoamericana de Metalurgia y Materiales, 2(2), 134–137.
  • Hidalgo, M., Muñoz, M., & Quintana, K. (2012). Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional. Revista Latinoamericana de Metalurgia y Materiales, 32(1), 89–95.
  • Hidalgo-Salazar, M. A., Mina, J. H., & Herrera-Franco, P. J. (2013a). The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Composites Part B-Engineering, 55, 345–351. https://doi.org/DOI 10.1016/j.compositesb.2013.06.032
  • Hidalgo-Salazar, M., Neves, L., & Baena, F. (2013b). Posibilidades de fabricación con el polietileno aluminio obtenido del reciclaje de envases multicapas Possibilities of fabrication of aluminium polyethylene obtained from multilayer package recycling. Informador Técnico, p 100-109. https://doi.org/https://doi.org/10.23850/22565035.51
  • Hitchon, J. W., & Phillips, D. C. (1979). The dependence of the strength of carbon fibres on length. Fibre Science and Technology, 12(3), 217–233. https://doi.org/10.1016/0015-0568(79)90032-0
  • Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2017). Effect of Wood Fibers on the Rheological and Mechanical Properties of Polystyrene/Wood Composites. Journal of Wood Chemistry and Technology, 37(4), 251–260. https://doi.org/10.1080/02773813.2016.1272127
  • Lopes, C. M. A., & Felisberti, M. I. (2006). Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. Journal of Applied Polymer Science, 101(5), 3183–3191. https://doi.org/10.1002/app.23406
  • Martínez-López, Y., Fernández-Concepción, R. R., Álvarez-Lazo, D. A., García-González, M., & Martínez-Rodríguez, E. (2014). Evaluación de las propiedades físico-mecánicas de los tableros de madera plástica producidos en Cuba respecto a los tableros convencionales. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 20(3), 227–236. https://doi.org/10.5154/r.rchscfa.2014.02.003
  • Moreno, D. D. P., & Saron, C. (2017). Low-density polyethylene waste/recycled wood composites. Composite Structures, 176, 1152–1157. https://doi.org/10.1016/j.compstruct.2017.05.076
  • Pamungkas, A. F., Ariawan, D., Surojo, E., & Triyono, J. (2018). Influence of fiber length on flexural and impact properties of Zalacca Midrib fiber/HDPE by compression molding. AIP Conference Proceedings, 1931. https://doi.org/10.1063/1.5024120
  • Paula, M. M. da S., Rodrigues, F. B. B. M., Bernardin, A. M., Fiori, M. A., & Angioletto, E. (2005). Characterization of aluminized polyethylene blends via mechanical recycling. Materials Science and Engineering: A, 403(1–2), 37–41. https://doi.org/10.1016/j.msea.2005.05.060
  • Quintero, M., Rodríguez, P., Rubio, J., Jaramillo, L., & Nuñez-Moreno, F. (2017). Bending and compression characterization of hollow structural elements made of recycled Tetra Pak®-Based Boards (RTPBB) and an approximated calculation of the carbon footprint involved in their production. Revista Ingeniería de Construcción, 32(3), 131–148. https://doi.org/10.4067/S0718-50732017000300131
  • Rhamin, H., Madhoushi, M., Ebrahimi, A., & Faraji, F. (2013). Effect of resin content, press time and overlaying on physical and mechanical properties of carton board made from recycled beverage carton and MUF resin. Life Science Journal, 10(SUPPL.4), 613–619.
  • Salamanca, J., & Vaca, J. (2017). Caracterización de un material compuesto de TetraPak, reforzado con polietileno de baja densidad (PEBD) y conformado en prensa de calor. Ingenio Magno, 8(1), 132–147.
  • Silva, K. C. P. da, Campos, A. T., Yanagi Junior, T., Cecchin, D., Lourençoni, D., & Ferreira, J. C. (2015). Reaproveitamento de resíduos de embalagens Tetra Pak-® em coberturas. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(1), 58–63. https://doi.org/10.1590/1807-1929/agriambi.v19n1p58-63
  • Souza, A. M., Nascimento, M. F., Almeida, D. H., Lopes Silva, D. A., Almeida, T. H., Christoforo, A. L., & Lahr, F. A. R. (2018). Wood-based composite made of wood waste and epoxy-based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production, 193, 549–562. https://doi.org/10.1016/j.jclepro.2018.05.087
  • Sun, X., & Zhang, Q. H. (2013). Study on the optimum hot-pressing process and surface decoration of waste Tetra Pak®/sawdust composite board. Advanced Materials Research, 710, 147–151. https://doi.org/10.4028/www.scientific.net/AMR.710.147
  • Turrado, J., Dávalos, M. F., Fuentes, F. J., & Saucedo, A. R. (2012). Envases de Cartón para Líquidos como Fuente de Fibra Secundaria. Información Tecnológica, 23(3), 59–66. https://doi.org/10.4067/S0718-07642012000300008
  • Universitat de Barcelona, n.d. Materials - Polietileno de baja densidad. Retrieved from: .
  • Valim, F. C. F., Silveira, D. C., Costa, M. L., Pereira, M. dos S., & Botelho, E. C. (2015). Estudo das propriedades morfológicas, térmicas e mecânicas do compósito particulado de alumínio e polietileno de baixa densidade reciclados. Revista Materia, 20(4), 852–865. https://doi.org/10.1590/S1517-707620150004.0092
  • Xia, Q. S., Boyce, M. C., & Parks, D. M. (2002). A constitutive model for the anisotropic elastic-plastic deformation of paper and paperboard. International Journal of Solids and Structures, 39(15), 4053–4071. https://doi.org/10.1016/S0020-7683(02)00238-X
  • Yadav, S. M., & Yusoh, K. Bin. (2015). Mechanical and Physical Properties of Wood-Plastic Composites Made of Polypropylene, Wood Flour and Nanoclay. International Journal of Agriculture, Forestry and Plantation, 1, 52–58. http://ijafp.com/wp-content/uploads/2015/10/FR-10.pdf
  • Yilgor, N., Köse, C., Terzi, E., Figen, A. K., Ibach, R., Kartal, S. N., & Pişkin, S. (2014). Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials. BioResources, 9(3), 4784–4807. https://doi.org/10.15376/biores.9.3.4784-4807
  • Zawadiak, J., Wojciechowski, S., Piotrowski, T., & Krypa, A. (2017). Tetra Pak® Recycling – Current Trends and New Developments. American Journal of Chemical Engineering, 5(3), 37–42. https://doi.org/10.11648/j.ajche.20170503.12