Hybrid HIIT/isometrics strength training programsa paradigm shift for physical exercise

  1. Luis Wyche 1
  2. Guillermo Rojo-Gil 1
  3. María Marín-Peiró 1
  4. José Antonio Pérez-Turpin 1
  5. Jaime Enrique Gómez-Paternina 1
  6. Carlos Elvira 1
  7. Duncan Ayers 2
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  2. 2 University of Malta
    info

    University of Malta

    Imsida, Malta

    ROR https://ror.org/03a62bv60

Revista:
Scientific Journal of Sport and Performance

ISSN: 2794-0586

Año de publicación: 2022

Volumen: 1

Número: 1

Páginas: 36-49

Tipo: Artículo

DOI: 10.55860/DFXO4471 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientific Journal of Sport and Performance

Resumen

This review aims to, firstly, to revise the importance of achieving, maintaining and recovering muscle mass and strength for improved health outcomes. Secondly, evaluate the benefits of directing the focus of medical interventions towards hypertrophic exercise and diet as an effective treatment to improve health and longevity. Thirdly, we propose the CyFit SmartGym, a novel device, as a potential screening tool for monitoring strength levels and as a HIIT/strength training for improving and documenting health outcomes.

Referencias bibliográficas

  • Reasons HIIT is So Effective [WWW Document], 2020. Fitness. URL https://petemccallfitness.com/benefits-of-hiit-workouts/ (accessed 6.4.21).
  • Ahima, R.S., Park, H.K., 2015. Connecting Myokines and Metabolism. Endocrinol. Metab. Seoul Korea 30, 235–245. https://doi.org/10.3803/enm.2015.30.3.235 DOI: https://doi.org/10.3803/EnM.2015.30.3.235
  • Anker, S.D., Coats, A.J., 1999. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 115, 836–847. https://doi.org/10.1378/chest.115.3.836 DOI: https://doi.org/10.1378/chest.115.3.836
  • Argent, R., Daly, A., Caulfield, B., 2018. Patient Involvement With Home-Based Exercise Programs: Can Connected Health Interventions Influence Adherence? JMIR MHealth UHealth 6, e47. https://doi.org/10.2196/mhealth.8518 DOI: https://doi.org/10.2196/mhealth.8518
  • Barbat-Artigas, S., Rolland, Y., Zamboni, M., Aubertin-Leheudre, M., 2012. How to assess functional status: a new muscle quality index. J. Nutr. Health Aging 16, 67–77. https://doi.org/10.1007/s12603-012-0004-5 DOI: https://doi.org/10.1007/s12603-012-0004-5
  • Ben-Zeev, T., Okun, E., 2021. High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromolecular Med. https://doi.org/10.1007/s12017-020-08638-8 DOI: https://doi.org/10.1007/s12017-020-08638-8
  • Biolo, G., Ciocchi, B., Lebenstedt, M., Heer, M., Guarnieri, G., 2002. Sensitivity of whole body protein synthesis to amino acid administration during short-term bed rest. J. Gravitational Physiol. J. Int. Soc. Gravitational Physiol. 9, P197-198. https://doi.org/10.1113/jphysiol.2004.066365 DOI: https://doi.org/10.1113/jphysiol.2004.066365
  • Booth, F.W., Roberts, C.K., 2008. Linking performance and chronic disease risk: indices of physical performance are surrogates for health. Br. J. Sports Med. 42, 950–952. https://doi.org/10.1136/bjsm.2008.052589 DOI: https://doi.org/10.1136/bjsm.2008.052589
  • Burgess, K.E., Connick, M.J., Graham-Smith, P., Pearson, S.J., 2007. Plyometric vs. isometric training influences on tendon properties and muscle output. J. Strength Cond. Res. 21, 986–989. https://doi.org/10.1519/R-20235.1 DOI: https://doi.org/10.1519/00124278-200708000-00055
  • Cuddy, T.F., Ramos, J.S., Dalleck, L.C., 2019. Reduced Exertion High-Intensity Interval Training is More Effective at Improving Cardiorespiratory Fitness and Cardiometabolic Health than Traditional Moderate-Intensity Continuous Training. Int. J. Environ. Res. Public. Health 16, E483. https://doi.org/10.3390/ijerph16030483 DOI: https://doi.org/10.3390/ijerph16030483
  • Danaei, G., Ding, E.L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C.J.L., Ezzati, M., 2009. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, e1000058. https://doi.org/10.1371/journal.pmed.1000058 DOI: https://doi.org/10.1371/journal.pmed.1000058
  • Dean, H.R., 1901. The isometric value of active muscle excited directly and indirectly. J. Physiol. 27, 257–268. https://doi.org/10.1113/jphysiol.1901.sp000870 DOI: https://doi.org/10.1113/jphysiol.1901.sp000870
  • Fawcett, E., Van Velthoven, M.H., Meinert, E., 2020. Long-Term Weight Management Using Wearable Technology in Overweight and Obese Adults: Systematic Review. JMIR MHealth UHealth 8, e13461. https://doi.org/10.2196/13461 DOI: https://doi.org/10.2196/13461
  • Firth, J., Stubbs, B., Vancampfort, D., Firth, J.A., Large, M., Rosenbaum, S., Hallgren, M., Ward, P.B., Sarris, J., Yung, A.R., 2018. Grip Strength Is Associated With Cognitive Performance in Schizophrenia and the General Population: A UK Biobank Study of 476559 Participants. Schizophr. Bull. 44, 728–736. https://doi.org/10.1093/schbul/sby034 DOI: https://doi.org/10.1093/schbul/sby034
  • Fiuza-Luces, C., Garatachea, N., Berger, N.A., Lucia, A., 2013. Exercise is the real polypill. Physiol. Bethesda Md 28, 330–358. https://doi.org/10.1152/physiol.00019.2013 DOI: https://doi.org/10.1152/physiol.00019.2013
  • Florido, R., Kwak, L., Lazo, M., Nambi, V., Ahmed, H.M., Hegde, S.M., Gerstenblith, G., Blumenthal, R.S., Ballantyne, C.M., Selvin, E., Folsom, A.R., Coresh, J., Ndumele, C.E., 2018. Six-Year Changes in Physical Activity and the Risk of Incident Heart Failure: ARIC Study. Circulation 137, 2142–2151. https://doi.org/10.1161/circulationaha.117.030226 DOI: https://doi.org/10.1161/CIRCULATIONAHA.117.030226
  • Friedebold, G., Stoboy, H., 1968. [Actual change in circumference and electrical activity in normal and inactivity-atrophied muscles during isometric training]. Arch. Orthop. Unfallchir. 64, 298–304. https://doi.org/10.1007/BF00583265 DOI: https://doi.org/10.1007/BF00583265
  • Friedebold, G., Stoboy, H., Nussgen, W., 1959. [Isometric training & electric activity in atrophy of the skeletal muscles caused by disuse]. Z. Orthop. Ihre Grenzgeb. 91, 79–87.
  • Garatachea, N., Pareja-Galeano, H., Sanchis-Gomar, F., Santos-Lozano, A., Fiuza-Luces, C., Morán, M., Emanuele, E., Joyner, M.J., Lucia, A., 2015. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 18, 57–89. https://doi.org/10.1089/rej.2014.1623 DOI: https://doi.org/10.1089/rej.2014.1623
  • GBD 2017 Diet Collaborators, 2019. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 393, 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8 DOI: https://doi.org/10.1016/S0140-6736(19)30041-8
  • Gonzalez-Gil, A.M., Elizondo-Montemayor, L., 2020. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 12. https://doi.org/10.3390/nu12061899 DOI: https://doi.org/10.3390/nu12061899
  • Grøntved, A., Ried-Larsen, M., Ekelund, U., Froberg, K., Brage, S., Andersen, L.B., 2013. Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and β-cell function in young adulthood: the European Youth Heart Study. Diabetes Care 36, 2575–2581. https://doi.org/10.2337/dc12-2252 DOI: https://doi.org/10.2337/dc12-2252
  • Grøntved, A., Ried-Larsen, M., Møller, N.C., Kristensen, P.L., Froberg, K., Brage, S., Andersen, L.B., 2015. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 49, 90–94. https://doi.org/10.1136/bjsports-2012-091907 DOI: https://doi.org/10.1136/bjsports-2012-091907
  • Harcombe, Z., Baker, J.S., Cooper, S.M., Davies, B., Sculthorpe, N., DiNicolantonio, J.J., Grace, F., 2015. Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: a systematic review and meta-analysis. Open Heart 2, e000196. https://doi.org/10.1136/openhrt-2014-000196 DOI: https://doi.org/10.1136/openhrt-2014-000196
  • Harrison, B.C., Leinwand, L.A., 2008. Fighting fat with muscle: bulking up to slim down. Cell Metab. 7, 97–98. https://doi.org/10.1016/j.cmet.2008.01.003 DOI: https://doi.org/10.1016/j.cmet.2008.01.003
  • Hettinger, T., Muller, E.A., 1953. [Muscle capacity and muscle training]. Arbeitsphysiologie Int. Z. Angew. Physiol. 15, 111–126. DOI: https://doi.org/10.1007/BF00934143
  • Hettinger, T., Steinhaus, P.A.H., Thurlwell, M.H., 2017. Physiology of Strength. Muriwai Books.
  • Hettinger, Z.R., Confides, A.L., Vanderklish, P.W., Sidhom, S., Masternak, M.M., Dupont-Versteegden, E.E., 2021. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames Dwarf and calorie restricted mice. Exp. Gerontol. 146, 111214. https://doi.org/10.1016/j.exger.2020.111214 DOI: https://doi.org/10.1016/j.exger.2020.111214
  • Hollmann, M., Schifferdecker-Hoch, F., 2017. Comparative study of millennials (age 20-34 years) grip and lateral pinch with the norms. J. Hand Ther. Off. J. Am. Soc. Hand Ther. 30, e1. https://doi.org/10.1016/j.jht.2016.10.002 DOI: https://doi.org/10.1016/j.jht.2016.10.002
  • Hurley, B.F., 1995. Age, gender, and muscular strength. J. Gerontol. A. Biol. Sci. Med. Sci. 50 Spec No, 41–44. https://doi.org/10.1093/gerona/50a.special_issue.41 DOI: https://doi.org/10.1093/gerona/50A.Special_Issue.41
  • Jang, M.K., Park, C., Tussing-Humphreys, L., Fernhall, B., Phillips, S., Doorenbos, A.Z., 2021. The Effectiveness of Sarcopenia Interventions for Cancer Patients Receiving Chemotherapy: A Systematic Review and Meta-analysis. Cancer Nurs. https://doi.org/10.1097/NCC.0000000000000957 DOI: https://doi.org/10.1097/NCC.0000000000000957
  • Janssen, I., Heymsfield, S.B., Wang, Z.M., Ross, R., 2000. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. Bethesda Md 1985 89, 81–88. https://doi.org/10.1152/jappl.2000.89.1.81 DOI: https://doi.org/10.1152/jappl.2000.89.1.81
  • Jeukendrup, A.E., Saris, W.H., Wagenmakers, A.J., 1998. Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism. Int. J. Sports Med. 19, 231–244. https://doi.org/10.1055/s-2007-971911 DOI: https://doi.org/10.1055/s-2007-971911
  • Jones, D.A., Rutherford, O.M., 1987. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J. Physiol. 391, 1–11. https://doi.org/10.1113/jphysiol.1987.sp016721 DOI: https://doi.org/10.1113/jphysiol.1987.sp016721
  • Kaur, H., Singh, T., Arya, Y.K., Mittal, S., 2020. Physical Fitness and Exercise During the COVID-19 Pandemic: A Qualitative Enquiry. Front. Psychol. 11, 590172. https://doi.org/10.3389/fpsyg.2020.590172 DOI: https://doi.org/10.3389/fpsyg.2020.590172
  • Kim, G., Lee, S.-E., Lee, Y.-B., Jun, J.E., Ahn, J., Bae, J.C., Jin, S.-M., Hur, K.Y., Jee, J.H., Lee, M.-K., Kim, J.H., 2018. Relationship Between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study. Hepatol. Baltim. Md 68, 1755–1768. https://doi.org/10.1002/hep.30049 DOI: https://doi.org/10.1002/hep.30049
  • Kim, S.H., Jeong, J.B., Kang, J., Ahn, D.-W., Kim, J.W., Kim, B.G., Lee, K.L., Oh, S., Yoon, S.H., Park, S.J., Lee, D.H., 2021. Association between sarcopenia level and metabolic syndrome. PloS One 16, e0248856. https://doi.org/10.1371/journal.pone.0248856 DOI: https://doi.org/10.1371/journal.pone.0248856
  • Konopka, A.R., Suer, M.K., Wolff, C.A., Harber, M.P., 2014. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J. Gerontol. A. Biol. Sci. Med. Sci. 69, 371–378. https://doi.org/10.1093/gerona/glt107 DOI: https://doi.org/10.1093/gerona/glt107
  • Laursen, P.B., Jenkins, D.G., 2002. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. Auckl. NZ 32, 53–73. https://doi.org/10.2165/00007256-200232010-00003 DOI: https://doi.org/10.2165/00007256-200232010-00003
  • Layman, D.K., Anthony, T.G., Rasmussen, B.B., Adams, S.H., Lynch, C.J., Brinkworth, G.D., Davis, T.A., 2015. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am. J. Clin. Nutr. 101, 1330S-1338S. https://doi.org/10.3945/ajcn.114.084053 DOI: https://doi.org/10.3945/ajcn.114.084053
  • Lee, K., Lee, J.Y., Kim, Y.H., 2021. Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women. Healthc. Basel Switz. 9. https://doi.org/10.3390/healthcare9040476 DOI: https://doi.org/10.3390/healthcare9040476
  • Low, S., Pek, S., Moh, A., Khin, C.Y.A., Lim, C.L., Ang, S.F., Wang, J., Ang, K., Tang, W.E., Lim, Z., Subramaniam, T., Sum, C.F., Lim, S.C., 2021. Low muscle mass is associated with progression of chronic kidney disease and albuminuria - An 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res. Clin. Pract. 174, 108777. https://doi.org/10.1016/j.diabres.2021.108777 DOI: https://doi.org/10.1016/j.diabres.2021.108777
  • Ma, Y., Fu, L., Jia, L., Han, P., Kang, L., Yu, H., Chen, X., Yu, X., Hou, L., Wang, L., Zhang, W., Niu, K., Guo, Q., 2018. Muscle strength rather than muscle mass is associated with osteoporosis in older Chinese adults. J. Formos. Med. Assoc. Taiwan Yi Zhi 117, 101–108. https://doi.org/10.1016/j.jfma.2017.03.004 DOI: https://doi.org/10.1016/j.jfma.2017.03.004
  • McCormick, R., Vasilaki, A., 2018. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 19, 519–536. https://doi.org/10.1007/s10522-018-9775-3 DOI: https://doi.org/10.1007/s10522-018-9775-3
  • McNab, B.K., 2019. What determines the basal rate of metabolism? J. Exp. Biol. 222. https://doi.org/10.1242/jeb.205591 DOI: https://doi.org/10.1242/jeb.205591
  • Micallef, C., 2014a. Community development as a possible approach for the management of diabetes mellitus focusing on physical activity lifestyle changes: A model proposed for Maltese people with diabetes. Int. J. Community Dev. 2, 30–40. https://doi.org/10.11634/233028791402582 DOI: https://doi.org/10.11634/233028791402582
  • Micallef, C., 2014b. The effectiveness of an 8-week Zumba programme for weight reduction in a group of Maltese overweight and obese women. Sport Sci. Health 10, 211–217. https://doi.org/10.1007/s11332-014-0195-8 DOI: https://doi.org/10.1007/s11332-014-0195-8
  • Micallef, C., Calleja, N., Decelis, A., 2010. Assessing the capabilities of 11-year-olds for three types of basic physical activities. Eur. J. Pediatr. 169, 1093–1096. https://doi.org/10.1007/s00431-010-1185-8 DOI: https://doi.org/10.1007/s00431-010-1185-8
  • Mitchell, J.H., Wildenthal, K., 1974. Static (isometric) exercise and the heart: physiological and clinical considerations. Annu. Rev. Med. 25, 369–381. https://doi.org/10.1146/annurev.me.25.020174.002101 DOI: https://doi.org/10.1146/annurev.me.25.020174.002101
  • Miyamoto-Mikami, E., Tsuji, K., Horii, N., Hasegawa, N., Fujie, S., Homma, T., Uchida, M., Hamaoka, T., Kanehisa, H., Tabata, I., Iemitsu, M., 2018. Gene expression profile of muscle adaptation to high-intensity intermittent exercise training in young men. Sci. Rep. 8, 16811. https://doi.org/10.1038/s41598-018-35115-x DOI: https://doi.org/10.1038/s41598-018-35115-x
  • Muchai Manyara, A., Mwaniki, E., Gray, C.M., Gill, J.M.R., 2021. Comparison of risk factors between people with type 2 diabetes and matched controls in Nairobi, Kenya. Trop. Med. Int. Health TM IH. https://doi.org/10.1111/tmi.13629 DOI: https://doi.org/10.1111/tmi.13629
  • Newman, A.B., Kupelian, V., Visser, M., Simonsick, E.M., Goodpaster, B.H., Kritchevsky, S.B., Tylavsky, F.A., Rubin, S.M., Harris, T.B., 2006. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 72–77. https://doi.org/10.1093/gerona/61.1.72 DOI: https://doi.org/10.1093/gerona/61.1.72
  • Nimmo, M.A., Leggate, M., Viana, J.L., King, J.A., 2013. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 15 Suppl 3, 51–60. https://doi.org/10.1111/dom.12156 DOI: https://doi.org/10.1111/dom.12156
  • Owen, K., Pettman, T., Haas, M., Viney, R., Misan, G., 2010. Individual preferences for diet and exercise programmes: changes over a lifestyle intervention and their link with outcomes. Public Health Nutr. 13, 245–252. https://doi.org/10.1017/S1368980009990784 DOI: https://doi.org/10.1017/S1368980009990784
  • Pérez-Turpin, J.A., Gomis-Gomis, M.J., Pérez-Suárez, P., Suárez-Llorca, C., 2019. Maxforce: The new option in strength, health levels and life expectancy measurement. J. Hum. Sport Exerc. 14, 841–855. https://doi.org/10.14198/jhse.2019.144.13 DOI: https://doi.org/10.14198/jhse.2019.144.13
  • Petrofsky, J., Batt, J., Jones, R., et al., 2007. Muscle strength training and weight loss from a combined isometric exercise and dietary program. J. Appl. Res. 7, 77–86.
  • Petrofsky, J., Batt, J., Suh, H.J., Jones, R., et al., 2006. Muscle Use During Isometric Co-contraction of Agonist-Antagonist Muscle Pairs in the Upper and Lower Body Compared to Abdominal Crunches and a Commercial Multi Gym Exerciser. J. Appl. Res. 6.
  • Pin, F., Bonewald, L.F., Bonetto, A., 2021. Role of myokines and osteokines in cancer cachexia. Exp. Biol. Med. Maywood NJ 15353702211009212. https://doi.org/10.1177/15353702211009213 DOI: https://doi.org/10.1177/15353702211009213
  • Robinson, E., Boyland, E., Chisholm, A., Harrold, J., Maloney, N.G., Marty, L., Mead, B.R., Noonan, R., Hardman, C.A., 2021. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 156, 104853. https://doi.org/10.1016/j.appet.2020.104853 DOI: https://doi.org/10.1016/j.appet.2020.104853
  • Robinson, M.M., Dasari, S., Konopka, A.R., Johnson, M.L., Manjunatha, S., Esponda, R.R., Carter, R.E., Lanza, I.R., Nair, K.S., 2017. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 25, 581–592. https://doi.org/10.1016/j.cmet.2017.02.009 DOI: https://doi.org/10.1016/j.cmet.2017.02.009
  • Rupert, J.E., Narasimhan, A., Jengelley, D.H.A., Jiang, Y., Liu, J., Au, E., Silverman, L.M., Sandusky, G., Bonetto, A., Cao, S., Lu, X., O’Connell, T.M., Liu, Y., Koniaris, L.G., Zimmers, T.A., 2021. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 218. https://doi.org/10.1084/jem.20190450 DOI: https://doi.org/10.1084/jem.20190450
  • Sakuma, K., Yamaguchi, A., 2012. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J. Cachexia Sarcopenia Muscle 3, 77–94. https://doi.org/10.1007/s13539-011-0052-4 DOI: https://doi.org/10.1007/s13539-011-0052-4
  • Schnohr, P., O’Keefe, J.H., Marott, J.L., Lange, P., Jensen, G.B., 2015. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J. Am. Coll. Cardiol. 65, 411–419. https://doi.org/10.1016/j.jacc.2014.11.023 DOI: https://doi.org/10.1016/j.jacc.2014.11.023
  • Sluijs, E.M., Kok, G.J., van der Zee, J., 1993. Correlates of exercise compliance in physical therapy. Phys. Ther. 73, 771–782; discussion 783-786. https://doi.org/10.1093/ptj/73.11.771 DOI: https://doi.org/10.1093/ptj/73.11.771
  • Spreadbury, I., 2012. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 5, 175–189. https://doi.org/10.2147/dmso.s33473 DOI: https://doi.org/10.2147/DMSO.S33473
  • Srikanthan, P., Karlamangla, A.S., 2014. Muscle mass index as a predictor of longevity in older adults. Am. J. Med. 127, 547–553. https://doi.org/10.1016/j.amjmed.2014.02.007 DOI: https://doi.org/10.1016/j.amjmed.2014.02.007
  • Sugden, P.H., Fuller, S.J., 1991. Regulation of protein turnover in skeletal and cardiac muscle. Biochem. J. 273(Pt 1), 21–37. https://doi.org/10.1042/bj2730021 DOI: https://doi.org/10.1042/bj2730021
  • Tremblay, A., Simoneau, J.A., Bouchard, C., 1994. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 43, 814–818. https://doi.org/10.1016/0026-0495(94)90259-3 DOI: https://doi.org/10.1016/0026-0495(94)90259-3
  • van Praag, H., 2009. Exercise and the brain: something to chew on. Trends Neurosci. 32, 283–290. https://doi.org/10.1016/j.tins.2008.12.007 DOI: https://doi.org/10.1016/j.tins.2008.12.007
  • Vásquez-Alvarez, S., Bustamante-Villagomez, S.K., Vazquez-Marroquin, G., Porchia, L.M., Pérez-Fuentes, R., Torres-Rasgado, E., Herrera-Fomperosa, O., Montes-Arana, I., Gonzalez-Mejia, M.E., 2021. Metabolic Age, an Index Based on Basal Metabolic Rate, Can Predict Individuals That are High Risk of Developing Metabolic Syndrome. High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 28, 263–270. https://doi.org/10.1007/s40292-021-00441-1 DOI: https://doi.org/10.1007/s40292-021-00441-1
  • Wolfe, R.R., 2006. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 84, 475–482. https://doi.org/10.1093/ajcn/84.3.475 DOI: https://doi.org/10.1093/ajcn/84.3.475
  • Wu, G., 2016. Dietary protein intake and human health. Food Funct. 7, 1251–1265. https://doi.org/10.1039/c5fo01530h DOI: https://doi.org/10.1039/C5FO01530H
  • Yerrakalva, D., Mullis, R., Mant, J., 2015. The associations of “fatness,” “fitness,” and physical activity with all-cause mortality in older adults: A systematic review. Obes. Silver Spring Md 23, 1944–1956. https://doi.org/10.1002/oby.21181 DOI: https://doi.org/10.1002/oby.21181