Influence of olive polyphenols on glucose and cholesterol levels in medaka fish

  1. Torró Montell, Luís 1
  2. Cortés-Castell, Ernesto 2
  3. Veciana-Galindo, Carmen 1
  4. Sirvent-Segura, Eliana 1
  5. Gil-Guillén, Vicente 3
  6. Rizo-Baeza, Mercedes 4
  1. 1 Departament of Research, Biopartner SL. Alcoy, Alicante, Spain
  2. 2 Department of Pharmacology, Pediatrics and Organic Chemistry, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
  3. 3 Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
  4. 4 Department of Nursing, University of Alicante, San Vicente del Raspeig, Alicante, Spain
Zeitschrift:
Journal of Negative and No Positive Results: JONNPR

ISSN: 2529-850X

Datum der Publikation: 2020

Ausgabe: 5

Nummer: 5

Seiten: 478-490

Art: Artikel

DOI: 10.19230/JONNPR.3356 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Journal of Negative and No Positive Results: JONNPR

Zusammenfassung

Background. Polyphenol-rich olive extracts are non-toxic and have anti-inflammatory, neuroprotective and antiadipogenic effects in cell and animal models. Objective. To evaluate the potential influence of olive extracts on the mechanisms of digestion and absorption of polysaccharides and fats by quantifying amylase, glucose, phospholipase, and cholesterol in the medaka fish model. Material and methods. For each assay, six adult fish were placed in a tank with an extract (0.01% concentration), performing three replicates per extract. A control group with standard feeding was used. The same procedure was followed to study glucose, adding a polysaccharide-rich diet and a corresponding  overfed control. The fish were maintained under these conditions for five days. Five olive extracts were used  without attempting to purify the polyphenols due to possible synergistic effects. Total concentrations were  between 2-116mg/g (mainly oleuropein and hydroxytyrosol). On completion, amylase, phospholipase A2,  glucose and cholesterol were quantified in each group. All assays were conducted in triplicate. Enzyme  activities were also studied in juveniles. Non-parametric tests were used to determine possible differences,  considering p<0.05 to denote statistical significance. Results. Polyphenol extracts were not toxic at a concentration of 0.1%, ten times higher than the concentration used. An overall decrease in glucose levels was observed in fish overfed with carbohydrates with the addition of the extracts, but without returning to the levels in the control group with standard feeding (between 15-40% decrease). There was no impact on amylase in adults or juveniles, an overall but not significant decrease in cholesterol, and an overall increase in phospholipase in the juveniles. Conclusion. Olive extracts rich in polyphenols lower glucose levels in overfed fish.  

Bibliographische Referenzen

  • Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013, 368, 1279-1290.
  • Gil-Guillen, V.; Orozco-Beltran, D.; Redon, J.; Pita-Fernandez, S.; Navarro-Pérez, J.; Pallares, V. et al. Rationale and methods of the cardiometabolic Valencian study (Escarval-Risk) for validation of risk scales in Mediterranean patients with hypertension, diabetes or dyslipidemia. BMC Public Health. 2010, 10, 717.
  • Hsu, C.L.; Yen, G.C. Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res. 2008, 52, 53-61.
  • Tian, C.; Ye, X.; Zhang, R.; Long, J.; Ren, W.; Ding, S. et al. Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway. PLoS One. 2013, 8, e53796.
  • Boqué, N.; Campión, J.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; San Román, B. et al. Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats. J Sci Food Agric. 2013, 93, 1226-1232.
  • Panickar, K.S. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol Nutr Food Res. 2013, 57, 34-47.
  • Boqué, N.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; Olivares, M.; Bañuelos, O. et al. Prevention of diet- induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res. 2013, 57, 1473-1478.
  • Manna, C.; D'Angelo, S.; Migliardi, V.; Loffredi, E.; Mazzoni, O.; Morrica, P. et al. Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J Agric Food Chem. 2002, 50, 6521- 6526.
  • Hao, J.; Shen, W.; Yu, G.; Jia, H.; Li, X.; Feng, Z. et al. Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes. J Nutr Biochem. 2010, 21, 634-644.
  • EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA)2, 3. European Food Safety Authority (EFSA), Parma, Italy. EFSA Journal 2011, 9, 2033.
  • Reglamento (UE) Nº 432/2012 de la Comisión de 16 de mayo de 2012. DO L 136 de 25.5. 2012, p. 1.
  • Veciana, C.; Cortés, E.; Torro, L.; Sirvent, E.; Rizo, M.M.; Gil, V. Evaluación de la citotoxicidad y bioseguridad de un extracto de polifenoles de huesos de aceitunas. Nutr Hosp. 2014, 29, 1388-1393.
  • Cortés, E.; Veciana, C.; Torro, L.; Sirvent, E.; Rizo, M.M.; Gil, V. Anti-inflammatory activity of olive seed polyphenolic extract in the THP1-XBlue-CD14 Human monocytes cell line. Nutr Hosp. 2014, 30, 113-117.
  • Cortés, E.; Veciana, C.; Torro, L.; Sirvent, E.; Rizo, M.M.; Gil, V. Efecto sobre el neurodesarrollo y neuroprotección en pez cebra de un extracto polifenólico de huesos de aceituna. Nutr Hosp. 2014, 30, 338-342.
  • Veciana-Galindo, C.; Cortés-Castell, E.; Torró-Montell, L.; Palazón-Bru, A.; Sirvent-Segura, E.; Rizo-Baeza, M.M.; Gil-Guillén, V.F. Anti-adipogenic activity of an olive seed extract in mouse fibroblasts. Nutr Hosp. 2015, 31, 2747- 2751.
  • Ichimura, K.; Kawashima, Y.; Nakamura, T.; Powell, R.; Hidoh, Y.; Terai, S. et al. Medaka fish, Oryzias latipes, as a model for human obesity-related glomerulopathy. Biochem Biophys Res Commun. 2013, 431, 712-717.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004, 79, 727-747.
  • Wolfram, S.; Wang, Y.; Thielecke, F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res. 2006, 50, 176-187.
  • Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. 2011, 55, 1177-1185.
  • Lasa, A.; Churruca, I.; Eseberri, I.; Andrés-Lacueva, C.; Portillo, M.P. Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Mol Nutr Food Res. 2012, 56, 1559-1568.
  • Park, H.J.; Jung, U.J.; Lee, M.K.; Cho, S.J.; Jung, H.K.; Hong, J.H. et al. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol Nutr Food Res. 2013, 57, 360-364.
  • Kuem, N.; Song, S.J.; Yu, R.; Yun, J.W.; Park, T. Oleuropein attenuates visceral adiposity in high-fat diet-induced obese mice through the modulation of WNT10b- and galanin-mediated signalings. Mol Nutr Food Res. 2014, 58, 2166-2176.
  • Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res. 2013, 57, 48-57.
  • Schartl, M.; Kneitz, S.; Wilde, B.; Wagner, T.; Henkel, C.V.; Spaink, H.P. et al. Conserved expression signatures between medaka and human pigment cell tumors. PLoS One. 2012, 7, e37880.
  • Zang, L.; Shimada, Y.; Nishimura, Y.; Tanaka, T.; Nishimura, N. A novel, reliable method for repeated blood collection from aquarium fish. Zebrafish. 2013, 10, 425-432.
  • Zang, L.; Shimada, Y.; Nishimura, Y.; Tanaka, T.; Nishimura, N. Repeated Blood Collection for Blood Tests in Adult Zebrafish. J Vis Exp. 2015, 102, e53272.
  • Chu, C.Y.; Chen, C.F.; Rajendran, R.S.; Shen, C.N.; Chen, T.H.; Yen, C.C. et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One. 2012, 7, e36474.