Eliminación de pesticidas mediante un biorreactor de membrana y dos tiempos diferentes de retención celular

  1. Edgardo Vásquez 1
  2. Arturo Trapote 1
  3. Daniel Prats 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Tecnología y Ciencias del Agua

ISSN: 2007-2422

Año de publicación: 2018

Volumen: 9

Número: 5

Páginas: 198-217

Tipo: Artículo

DOI: 10.24850/J-TYCA-2018-05-08 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Tecnología y Ciencias del Agua

Resumen

En esta investigación se evaluó la eficiencia de un bior r eactor de membrana ( MBR, por sus siglas en inglés) , para eliminar pesticidas. Además , se comprobó que la presencia de pesticidas no influye ra en la eficiencia de eliminación de materia orgánica. Se estudi ó un total de 16 pesticidas, con los que se dopó agua residual urbana sintética. La investigación se llevó a cabo en una planta MBR a escala piloto, operada a tiempos de retención celular (TRC) de 30 y 60 días, carga másica de 0.23 kgDQO∙kgSSV - 1 ·d - 1 y flujo promedio de 5.44 l ∙m - 2 h - 1 . Los resultados demostraron que las triazinas y el linurón presentan menor grado de eliminación, siendo los mejores resultados a TRC de 60 días con valores entre 73 y 82% ; los organoclorados se reducen en el orden de 90 y 99%. Esta tecnología puede alcanzar una calidad óptima del efluente ,permitiendo su reutilización , o bien puede contribuir en el manten imiento d el estado ecológico adecuado del medio receptor

Referencias bibliográficas

  • Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling.Chemical Engineering Journal, 307, 897-913.Recuperado dehttp://dx.doi.org/10.1016/j.cej.2016.08.144
  • Bernhard, M., Müller, J., & Knepper, T. P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment.Water Research, 40(18), 3419-3428. Recuperado de https://doi.org/10.1016/j.watres.2006.07.011
  • Bo, L., Urase, T., & Wang, X. (2009). Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor.Frontiers of Environmental Science & Engineering in China,3(2), 236-240. Recuperado de https://doi.org/10.1007/s11783-009-0004-9
  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination,239(1-2),229-246.Recuperado dehttp://dx.doi.org/10.1016/j.desal.2008.03.020
  • Boonyaroj, V., Chiemchaisri, C., Chiemchaisri, W., Theepharaksapan, S., & Yamamoto, K. (2012). Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate.Bioresource Technology,113, 174-180. Recuperado dehttp://dx.doi.org/10.1016/j.biortech.2011.12.127
  • Buttiglieri, G., Migliorisi, L., & Malpei, F. (2011). Adsorption and removal at low atrazine concentration in an MBR pilot plant.Water Science and Technology,63(7), 1334-1340. DOI: 10.2166 / wst.2011.130
  • De-Almeida-Azevedo, D., Lacorte, S., Vinhas, T., Viana, P., & Barceló, D. (2000). Monitoring of priority pesticides and other organic pollutants in river water from portugal by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.Journal of Chromatography A,879(1), 13-26. Recuperado de https://doi.org/10.1016/S0021-9673(00)00372-1
  • De-Gusseme, B., Vanhaecke, L., Verstraete, W., & Boon, N. (2011). Degradation of acetaminophen by delftia tsuruhatensis and pseudomonas aeruginosa in a membrane bioreactor.Water Research,45(4), 1829-1837.Recuperado dehttp://dx.doi.org/10.1016/j.watres.2010.11.040
  • Domínguez,C., L. (2010). Análisis del ensuciamiento de membranas en biorreactores de membranas sumergidas escala piloto(tesis).Universidad de Alicante, Alicante, España.Ghoshdastidar, A. J., & Tong, A. Z. (2013). Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology.Environmental Science and Pollution Research,20(8), 5188-5197.Recuperado dehttps://doi.org/10.1007/s11356-013-1498-z
  • Halling-Sorensen, B., Nors,N.S., Lanzky, P. F., Ingerslev, F., Holten-Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review.Chemosphere, 36(2), 357-393. Recuperado dehttp://dx.doi.org/10.1016/S0045-6535(97)00354-8
  • Holler, S., & Trösch, W. (2001). Treatment of urban wastewater in a membrane bioreactor at high organic loading rates.Journal of Biotechnology,92(2),95-101.Recuperado dehttps://doi.org/10.1016/S0168-1656(01)00351-0
  • Jones, O., Voulvoulis, N., & Lester, J. (2005). Human pharmaceuticals in wastewater treatment processes.Critical Reviews in Environmental Science and Technology, 35(4), 401-427. Recuperado de https://doi.org/10.1080/10643380590956966
  • Judd, S. J. (2016). The status of industrial and municipal effluent treatment with membrane bioreactor technology.Chemical Engineering Journal,305, 37-45. Recuperado de http://dx.doi.org/10.1016/j.cej.2015.08.141
  • Kantiani, L., Farré, M., Asperger, D., Rubio, F., González, S., López-de-Alda,M. J., Petrović, M., Shelver, W. L., Barceló, D. (2008). Triclosan and methyl-triclosan monitoring study in the northeast of spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography–mass spectrometry.Journal of Hydrology,361(1-2), 1-9.Recuperado dehttps://doi.org/10.1016/j.jhydrol.2008.07.016
  • Karaolia, P., Michael-Kordatou, I., Hapeshi, E., Alexander, J., Schwartz, T., & Fatta-Kassinos, D. (2017). Investigation of the potential of a membrane BioReactor followed by solar fenton oxidation to remove antibiotic-related microcontaminants.Chemical Engineering Journal,310, Part 2, 491-502. Recuperado de http://dx.doi.org/10.1016/j.cej.2016.04.113
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in south korean surface, drinking, and waste waters.Water Research,41(5), 1013-1021.Recuperado dehttps://doi.org/10.1016/j.watres.2006.06.034
  • Kimura, K., Hara, H., & Watanabe, Y. (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs).Desalination,178(1-3), 135-140.Recuperado dehttps://doi.org/10.1016/j.desal.2004.11.033
  • Köck-Schulmeyer, M., Villagrasa, M., López-de-Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact.Science of the Total Environment, 458-460, 466-476. Recuperado de http://doi.org/10.1016/j.scitotenv.2013.04.010
  • Kümmerer, K. (2004). Resistance in the environment.Journal of Antimicrobial Chemotherapy,54(2), 311-320. Recuperado de https://doi.org/10.1093/jac/dkh325
  • Leyva-Díaz, J. C. (2015). Estudio cinético de biorreactores de membrana con y sin lecho móvil aplicados al tratamiento de aguas residuales urbanas(tesis).Universidad de Granada, Granada, España.
  • Leyva-Díaz, J. C., Calderón, K., Rodríguez, F. A., González-López, J., Hontoria, E.,& Poyatos, J. M. (2013). Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal.Biochemical Engineering Journal,77, 28-40. Recuperado delhttps://doi.org/10.1016/j.bej.2013.04.023
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J.,&Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.Science of the Total Environment,473-474, 619-641. Recuperado dehttp://dx.doi.org/10.1016/j.scitotenv.2013.12.065
  • Margot, J., Rossi, L., Barry, D. A., & Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants.Wiley Interdisciplinary Reviews: Water,2(5), 457-487. Recuperado de https://doi.org/10.1002/wat2.1090
  • Navaratna, D., Elliman, J., Cooper, A., Shu, L., Baskaran, K., & Jegatheesan, V. (2012). Impact of herbicide ametryn on microbial communities in mixed liquor of a membrane bioreactor (MBR).Bioresource Technology, 113, 181-190. Recuperado dehttps://doi.org/10.1016/j.biortech.2011.12.018
  • Neoh, C. H., Noor, Z. Z., Mutamim, N. S. A., & Lim, C. K. (2016). Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems.Chemical Engineering Journal,283, 582-594. Recuperado de http://dx.doi.org/10.1016/j.cej.2015.07.060
  • Ouyang, K., & Liu, J. (2009). Effect of sludge retention time on sludge characteristics and membrane fouling ofmembrane bioreactor.Journal of Environmental Sciences,21(10), 1329-1335. Recuperado de https://doi.org/10.1016/S1001-0742(08)62422-5
  • Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E., & Malato, S. (2013). Application of solar AOPsand ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents.Water Research,47(4), 1521-1528.Recuperado de https://doi.org/10.1016/j.watres.2012.11.002
  • Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.Water Research,43(3), 831-841. Recuperado de https://doi.org/10.1016/j.watres.2008.11.043
  • Ramalho, R. S. (1990). Tratamiento de aguas residuales. Barcelona, España:Editorial Reverté.Reif, R., Suárez, S., Omil, F., & Lema, J. M. (2008). Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage.Desalination,221(1-3), 511-517. Recuperado de https://doi.org/10.1016/j.desal.2007.01.111
  • Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2014). Monitoring of selected priority and emerging contaminants in the guadalquivir river and other related surface waters in the province of jaén, south east spain.Science of the Total Environment,479-480(1), 247-257. Recuperado de https://doi.org/10.1016/j.scitotenv.2014.01.121
  • Rodríguez, F. A., Poyatos, J. M., Reboleiro-Rivas, P., Osorio, F., González-López, J., & Hontoria, E. (2011). Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supplythe aerobic conditions.Bioresource Technology, 102(10).Recuperado de https://doi.org/10.1016/j.biortech.2011.02.083
  • Spanjers, H., Vanrolleghem, P., Olsson, G., & Dold, P. (1996). Respirometry in control of the activated sludge process.Water Science and Technology, 34(3-4), 117-126
  • Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties.Water Research, 45(8), 2439-2451. Recuperado dehttps://doi.org/10.1016/j.watres.2011.01.023
  • Trinh, T., Van-den-Akker, B., Coleman, H. M., Stuetz, R. M., Drewes, J. E., Le-Clech, P., & Khan, S. J. (2016). Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor.Science of the Total Environment,550, 176-183.Recuperado dehttps://doi.org/10.1016/j.scitotenv.2015.12.083
  • Wijekoon, K. C., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2013). The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology,144, 247-254.Recuperado dehttps://doi.org/10.1016/j.biortech.2013.06.097