Eliminación de pesticidas mediante un biorreactor de membrana y dos tiempos diferentes de retención celular

  1. Edgardo Vásquez 1
  2. Arturo Trapote 1
  3. Daniel Prats 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Journal:
Tecnología y Ciencias del Agua

ISSN: 2007-2422

Year of publication: 2018

Volume: 9

Issue: 5

Pages: 198-217

Type: Article

DOI: 10.24850/J-TYCA-2018-05-08 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Tecnología y Ciencias del Agua

Abstract

This research evaluated the efficiency of a membrane bioreactor (MBR) to eliminate pesticides. It also demonstrated that the presence of pesticides did not influence the efficiency of elimination of organic matter. Sixteen pesticides were studied, which we re used to dope a synthetic urban residual water. The research was carried out in a pilot scale MBR plant, operated at a sludge retention time (SRT) of 30 and 60 days, with a mass loading of 0.23 kgCOD∙kgVSS - 1 ·d - 1 and average flow of 5.44 L∙m - 2 h - 1 . The res ults showed that triazines and linuron have a lower degree of elimination, with the best results being 60 days TRC with values between 73% and 82%, while organochlorines were reduced in the order of 90% and 99%. This technology can result in an excellent e ffluent quality, allowing it to be reused and contributing to maintain the good ecological state of the receiving environment.

Bibliographic References

  • Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling.Chemical Engineering Journal, 307, 897-913.Recuperado dehttp://dx.doi.org/10.1016/j.cej.2016.08.144
  • Bernhard, M., Müller, J., & Knepper, T. P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment.Water Research, 40(18), 3419-3428. Recuperado de https://doi.org/10.1016/j.watres.2006.07.011
  • Bo, L., Urase, T., & Wang, X. (2009). Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor.Frontiers of Environmental Science & Engineering in China,3(2), 236-240. Recuperado de https://doi.org/10.1007/s11783-009-0004-9
  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination,239(1-2),229-246.Recuperado dehttp://dx.doi.org/10.1016/j.desal.2008.03.020
  • Boonyaroj, V., Chiemchaisri, C., Chiemchaisri, W., Theepharaksapan, S., & Yamamoto, K. (2012). Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate.Bioresource Technology,113, 174-180. Recuperado dehttp://dx.doi.org/10.1016/j.biortech.2011.12.127
  • Buttiglieri, G., Migliorisi, L., & Malpei, F. (2011). Adsorption and removal at low atrazine concentration in an MBR pilot plant.Water Science and Technology,63(7), 1334-1340. DOI: 10.2166 / wst.2011.130
  • De-Almeida-Azevedo, D., Lacorte, S., Vinhas, T., Viana, P., & Barceló, D. (2000). Monitoring of priority pesticides and other organic pollutants in river water from portugal by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.Journal of Chromatography A,879(1), 13-26. Recuperado de https://doi.org/10.1016/S0021-9673(00)00372-1
  • De-Gusseme, B., Vanhaecke, L., Verstraete, W., & Boon, N. (2011). Degradation of acetaminophen by delftia tsuruhatensis and pseudomonas aeruginosa in a membrane bioreactor.Water Research,45(4), 1829-1837.Recuperado dehttp://dx.doi.org/10.1016/j.watres.2010.11.040
  • Domínguez,C., L. (2010). Análisis del ensuciamiento de membranas en biorreactores de membranas sumergidas escala piloto(tesis).Universidad de Alicante, Alicante, España.Ghoshdastidar, A. J., & Tong, A. Z. (2013). Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology.Environmental Science and Pollution Research,20(8), 5188-5197.Recuperado dehttps://doi.org/10.1007/s11356-013-1498-z
  • Halling-Sorensen, B., Nors,N.S., Lanzky, P. F., Ingerslev, F., Holten-Lützhøft, H. C., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review.Chemosphere, 36(2), 357-393. Recuperado dehttp://dx.doi.org/10.1016/S0045-6535(97)00354-8
  • Holler, S., & Trösch, W. (2001). Treatment of urban wastewater in a membrane bioreactor at high organic loading rates.Journal of Biotechnology,92(2),95-101.Recuperado dehttps://doi.org/10.1016/S0168-1656(01)00351-0
  • Jones, O., Voulvoulis, N., & Lester, J. (2005). Human pharmaceuticals in wastewater treatment processes.Critical Reviews in Environmental Science and Technology, 35(4), 401-427. Recuperado de https://doi.org/10.1080/10643380590956966
  • Judd, S. J. (2016). The status of industrial and municipal effluent treatment with membrane bioreactor technology.Chemical Engineering Journal,305, 37-45. Recuperado de http://dx.doi.org/10.1016/j.cej.2015.08.141
  • Kantiani, L., Farré, M., Asperger, D., Rubio, F., González, S., López-de-Alda,M. J., Petrović, M., Shelver, W. L., Barceló, D. (2008). Triclosan and methyl-triclosan monitoring study in the northeast of spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography–mass spectrometry.Journal of Hydrology,361(1-2), 1-9.Recuperado dehttps://doi.org/10.1016/j.jhydrol.2008.07.016
  • Karaolia, P., Michael-Kordatou, I., Hapeshi, E., Alexander, J., Schwartz, T., & Fatta-Kassinos, D. (2017). Investigation of the potential of a membrane BioReactor followed by solar fenton oxidation to remove antibiotic-related microcontaminants.Chemical Engineering Journal,310, Part 2, 491-502. Recuperado de http://dx.doi.org/10.1016/j.cej.2016.04.113
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in south korean surface, drinking, and waste waters.Water Research,41(5), 1013-1021.Recuperado dehttps://doi.org/10.1016/j.watres.2006.06.034
  • Kimura, K., Hara, H., & Watanabe, Y. (2005). Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs).Desalination,178(1-3), 135-140.Recuperado dehttps://doi.org/10.1016/j.desal.2004.11.033
  • Köck-Schulmeyer, M., Villagrasa, M., López-de-Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact.Science of the Total Environment, 458-460, 466-476. Recuperado de http://doi.org/10.1016/j.scitotenv.2013.04.010
  • Kümmerer, K. (2004). Resistance in the environment.Journal of Antimicrobial Chemotherapy,54(2), 311-320. Recuperado de https://doi.org/10.1093/jac/dkh325
  • Leyva-Díaz, J. C. (2015). Estudio cinético de biorreactores de membrana con y sin lecho móvil aplicados al tratamiento de aguas residuales urbanas(tesis).Universidad de Granada, Granada, España.
  • Leyva-Díaz, J. C., Calderón, K., Rodríguez, F. A., González-López, J., Hontoria, E.,& Poyatos, J. M. (2013). Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal.Biochemical Engineering Journal,77, 28-40. Recuperado delhttps://doi.org/10.1016/j.bej.2013.04.023
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J.,&Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.Science of the Total Environment,473-474, 619-641. Recuperado dehttp://dx.doi.org/10.1016/j.scitotenv.2013.12.065
  • Margot, J., Rossi, L., Barry, D. A., & Holliger, C. (2015). A review of the fate of micropollutants in wastewater treatment plants.Wiley Interdisciplinary Reviews: Water,2(5), 457-487. Recuperado de https://doi.org/10.1002/wat2.1090
  • Navaratna, D., Elliman, J., Cooper, A., Shu, L., Baskaran, K., & Jegatheesan, V. (2012). Impact of herbicide ametryn on microbial communities in mixed liquor of a membrane bioreactor (MBR).Bioresource Technology, 113, 181-190. Recuperado dehttps://doi.org/10.1016/j.biortech.2011.12.018
  • Neoh, C. H., Noor, Z. Z., Mutamim, N. S. A., & Lim, C. K. (2016). Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems.Chemical Engineering Journal,283, 582-594. Recuperado de http://dx.doi.org/10.1016/j.cej.2015.07.060
  • Ouyang, K., & Liu, J. (2009). Effect of sludge retention time on sludge characteristics and membrane fouling ofmembrane bioreactor.Journal of Environmental Sciences,21(10), 1329-1335. Recuperado de https://doi.org/10.1016/S1001-0742(08)62422-5
  • Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E., & Malato, S. (2013). Application of solar AOPsand ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents.Water Research,47(4), 1521-1528.Recuperado de https://doi.org/10.1016/j.watres.2012.11.002
  • Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.Water Research,43(3), 831-841. Recuperado de https://doi.org/10.1016/j.watres.2008.11.043
  • Ramalho, R. S. (1990). Tratamiento de aguas residuales. Barcelona, España:Editorial Reverté.Reif, R., Suárez, S., Omil, F., & Lema, J. M. (2008). Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage.Desalination,221(1-3), 511-517. Recuperado de https://doi.org/10.1016/j.desal.2007.01.111
  • Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2014). Monitoring of selected priority and emerging contaminants in the guadalquivir river and other related surface waters in the province of jaén, south east spain.Science of the Total Environment,479-480(1), 247-257. Recuperado de https://doi.org/10.1016/j.scitotenv.2014.01.121
  • Rodríguez, F. A., Poyatos, J. M., Reboleiro-Rivas, P., Osorio, F., González-López, J., & Hontoria, E. (2011). Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supplythe aerobic conditions.Bioresource Technology, 102(10).Recuperado de https://doi.org/10.1016/j.biortech.2011.02.083
  • Spanjers, H., Vanrolleghem, P., Olsson, G., & Dold, P. (1996). Respirometry in control of the activated sludge process.Water Science and Technology, 34(3-4), 117-126
  • Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties.Water Research, 45(8), 2439-2451. Recuperado dehttps://doi.org/10.1016/j.watres.2011.01.023
  • Trinh, T., Van-den-Akker, B., Coleman, H. M., Stuetz, R. M., Drewes, J. E., Le-Clech, P., & Khan, S. J. (2016). Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor.Science of the Total Environment,550, 176-183.Recuperado dehttps://doi.org/10.1016/j.scitotenv.2015.12.083
  • Wijekoon, K. C., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2013). The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology,144, 247-254.Recuperado dehttps://doi.org/10.1016/j.biortech.2013.06.097