Rutas cognitivas de futuros maestros ante una situación comparativa de razones desiguales

  1. Monje Parrilla, Javier 1
  2. Gómez Alfonso, Bernardo 2
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  2. 2 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2019

Volumen: 37

Número: 2

Páginas: 151-172

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.2606 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Objetivos de desarrollo sostenible

Resumen

En esta investigación se analizan las rutas cognitivas que subyacen a las resoluciones de un grupo de futuros maestros ante una tarea de comparación de razones desiguales en el contexto de las ofertas comerciales. La revisión de la literatura y el análisis en profundidad de las componentes críticas de la tarea nos han permitido definir las dimensiones de análisis de las resoluciones. A partir de ellas hemos realizado un análisis cualitativo de corte interpretativo del cual se desprende que los participantes poseen un escaso desarrollo del pensamiento relativo. Un número importante de ellos presenta dificultades con la comparación de las cantidades relativas desiguales cuando estas se les presentan normalizadas de forma diferente y con distinto referente.

Información de financiación

La normalización es un complejo de técnicas que permiten visualizar ciertas razones transformando el referente (Freudenthal, 1983). Por ejemplo, para la anterior situación, «descuentan 2 € por cada 5 € que se pagan, del total que son 7 €», se puede visualizar otra razón transformando el referente al responder qué parte es la que descuentan, «descuentan 2 € de cada 7 € que se compran», y a su vez esta se puede presentar normalizada a porcentaje, «me descuentan un 28,5 %». Por tanto, la normalización es un proceso útil para facilitar la visualización y comparación de razones con referentes distintos. Fer-nández (2009) distingue dos maneras para normalizar razones, «una en la que se cambian los referentes mediante escalas de manera que las magnitudes o tamaños resulten normales o familiares y otra en la que se unifican los antecedentes o los consecuentes de las razones para favorecer la comparación» (p. 52). La normalización, por tanto, está supeditada a la flexibilidad de pensamiento, lo cual permite elegir a conveniencia la forma de representar a la razón: fracción, decimal, porcentaje o unidad compuesta.

Financiadores

Referencias bibliográficas

  • Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C. y Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics, 36 (3), 247-273. https://doi.org/10.1023/a:1003235712092
  • Ben-Chaim, D., Ilany, B. S. y Keret, Y. (2002). Mathematical and pedagogical knowledge of pre-and in-service elementary teachers before and after experience in proportional reasoning activities. En A. D. Cockburn y E. Nardi (Eds.), Proceedings of the 26th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 81-88). Norwich: pme.
  • Clark, M., Berenson, S. y Cavey, L. (2003), A comparison of ratios and fractions and their roles as tools in proportional reasoning, Journal of Mathematical Behavior, 22(3), 297-317. https://doi.org/10.1016/s0732-3123(03)00023-3
  • Cramer, K. y Post, T. (1993). Proportional reasoning. Mathematics Teacher, 86(5), 404-407.
  • Fernández, A. (2009). Razón y proporción. Un estudio en la escuela primaria. Valencia: Universitat de València.
  • Fernández, C. y Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la educación primaria y secundaria. Enseñanza de las Ciencias: Revista de Investigación y Experiencias Didácticas, 30(1), 129-142. https://doi.org/10.5565/rev/ec/v30n1.596
  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: D. Reidel.
  • Gómez, B. (2016). Sobre el análisis didáctico de la razón. En E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruiz, y M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje al profesor Luis Rico (pp. 165-174). Granada: Comares.
  • Gómez, B. y García, A. (2015). What is a better buy? Rationale and empirical analysis of unequal ratios tasks in commercial offers contexts. En K. Krainer y N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 266-273). Praga, República Checa: erme.
  • Gómez, B., Monje, J., Pérez-Tyteca, P. y Rigo, M. (2013). Performance in ratio realistic discount task. En B. Ubuz, Ç. Haser y M. A. Mariotti (Eds.), Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (pp. 293-302). Middle East Technical University. Manavgat-side/Antalya. Turquía: erme.
  • Hart, K. M. (1981). Children’s understanding of mathematics: 11-16. Londres: John Murray Publishers Ltd.
  • Heller, P., Ahlgren, A., Post, T., Behr, M. y Lesh, R. (1989). Proportional reasoning: The effect of two context variables, rate type and problem setting. Journal for Research in Science Teaching, 26(1), 205-220. https://doi.org/10.1002/tea.3660260303
  • Hoffer, A. (1988). Ratios and proportional thinking. En: T. Post (Ed.), Teaching mathematics in grades K-8: Research based methods. (pp. 285-313). Boston: Allyn and Bacon.
  • Ilany, B. S., Keret, Y. y Ben-Chaim, D. (2004). Implementation of a model using authentic investigative activities for teaching ratio & proportion in pre-service teacher education. En M. J. Høines y A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 81-88). Bergen, Noruega: pme.
  • Karplus, R., Pulos, S. y Stage, E. K. (1983). Early adolescents’ proportional reasoning on «rate» problems. Educational Studies in Mathematics, 14(3), 219-233. https://doi.org/10.1007/bf00410539
  • Lamon, S. J. (1993). Ratio and proportion: connecting content and children’s thinking. Journal for Research in Mathematics Education, 24(1), 41-61. https://doi.org/10.2307/749385
  • Lamon, S. J. (2012). Teaching fractions and ratios for understanding. Essential content knowledge and instructional strategies for teachers, 3rd edition. Nueva York: Routledge Taylor y Francis Group. https://doi.org/10.4324/9780203803165
  • Livy, S. y Vale, C. (2011). First year pre-service teachers’ mathematical content knowledge: Methods of solution for a ratio question. Mathematics Teacher Education and Development, 13(2), 22-43.
  • Lobato, J. y Ellis, A. (2011). Developing essential understanding of ratios, proportions and proportional reasoning for teaching mathematics in grades 6-8. Reston, VA: National Council of Teachers of Mathematics.
  • Monje, J., Pérez-Tyteca, P. y Gómez, B. (2013). Trabajando la metacognición en una tarea de razón y proporción. En A. Berciano, G. Gutiérrez, A. Estepa y N. Climent (Eds.), Investigación en Educación Matemática XVII (pp. 393-401). Bilbao: seiem.
  • Noelting, G. (1980). The development of proportional reasoning and the ratio concept. Part I—Differentiation of stages. Educational Studies in Mathematics, 11, 217-253. https://doi.org/10.1007/bf00304357
  • Parker, M. (1997). The ups and downs of percent (and some interesting connections). School Science and Mathematics, 97(8), 406-412. https://doi.org/10.1111/j.1949-8594.1997.tb17385.x
  • Singer, J. A. y Resnick, L. B. (1992). Representations of proportional relationships: are children part-part or part-whole reasoners? Educational Studies in Mathematics, 23, 231-246. https://doi.org/10.1007/bf02309531
  • Smith, J. P. (2002). The development of students’ knowledge of ratios. En B. Litwiller y G. Bright (Eds.), 2002 Yearbook of the nctm (pp. 3-17). Reston, VA: National Council of Teachers of Mathematics.
  • Sowder, J., Armstrong, B., Lamon, S., Simon, M., Sowder, L. y Thompson, A. (1998). Educating teachers to teach multiplicative structures in the middle grades. Journal of Mathematics Teacher Education, 1(2), 127-155. https://doi.org/10.1023/a:1009980419975
  • Thompson, P. (1994). The development of the concept of speed and its relationship to concepts of rate. En G. Harel y J. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 179-234). Albany, NY: State University of New York Press.
  • Tourniaire, F. y Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16(2), 181-204. https://doi.org/10.1007/bf02400937
  • Valverde, G. y Castro, E. (2012). Prospective Elementary School Teachers Proportional Reasoning. pna, 7(1), 1-17.
  • Vergnaud, G. (1983). Multiplicative structures. En R. Lesh y M. Landau (Eds.), Acquisitions of Mathematics Concepts and Processes (pp. 127-174). Nueva York: Academic Press.