Empleo de Filtralite para eliminar Ni en aguas de escorrentía urbana: una modelación numérica para la gestión sostenible del agua en las ciudades

  1. Mederos, Marlon 1
  2. Pla, Concepción 1
  3. Valdes-Abellan, Javier 1
  4. Benavente, David 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Ingeniería del agua

ISSN: 1134-2196

Any de publicació: 2024

Volum: 28

Número: 4

Pàgines: 237-245

Tipus: Article

DOI: 10.4995/IA.2024.21731 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Ingeniería del agua

Resum

This study focuses on the management of urban drainage systems designed to reduce stormwater pollution. It emphasizes the removal of nickel (Ni), found in urban runoff water, due to its toxicity and potential accumulation in living organisms. Laboratory column tests are proposed using Filtralite as the filtration material. The HP1 module is utilized to calibrate a model that analyzes the transport and elimination of this heavy metal. It was observed that the interaction between the material and the contaminated solution increases the pH, leading to the precipitation of nickel hydroxide in the initial nodes of the column. The results indicate that the concentration of the contaminant in the solution is directly dependent on the pH. Under acidic conditions, Ni remains in solution, but beginning at a pH of 7.5, its elimination starts, and it completely precipitates for pH values above 11.

Referències bibliogràfiques

  • Alloway, B. 2013. Heavy metals in soils: Trace Metals and Metalloids in Soils and their Bioavailability (E. Pollution, Ed. third ed., Vol. 22). https://doi.org/10.1007/978-94-007-4470-7
  • Alomá-Vicente, I., Blázquez-García II, G., Calero-de-Hoces, M., Martín-Lara, M.Á., Rodríguez, I., Ronda-Gálvez II, A. 2013. An Overview around Water Pollution by Nickel. Biosorption as Treatment Technology. Revista Cubana de Química, XXV (3), 266-280.
  • Amiri, N., Nakhaei, M. 2021. An investigation of qualitative variations of groundwater resources under municipal wastewater recharge using numerical and laboratory models, Nazarabad plain, Iran [Article]. Environmental Science and Pollution Research, 28(39), 55771-55785. https://doi.org/10.1007/s11356-021-12638-x
  • Appelo, C.A.J., Postma, D. 2005. Geochemistry groundwater and pollution (2nd Edition ed., Vol. Rotterdam) https://doi.org/10.1201/9781439833544
  • ATSDR. 2005. Toxical Profile for Nickel. Department of Health and Human Services, US. Agency for Toxic Substances and Disease Registry. Public Health Service.
  • Boletín Oficial del Estado. 1993. Ley 10/1993, de 26 de octubre, sobre Vertidos Líquidos Industriales al Sistema Integral de Saneamiento. 1993. https://www.boe.es/eli/es-md/l/1993/10/26/10
  • Bruneel, Y., Van Laer, L., Brassinnes, S., Smolders, E. 2021. The sorption of caesium to glauconite sands obeys local equilibrium at environmentally relevant water flow rates. Applied Geochemistry, 133, 105073. https://doi.org/10.1016/j.apgeochem.2021.105073
  • Camaño, N.E., Maine, M.A., Hadad, H.R., Nocetti, E., Campagnoli, M.A. 2019. Effect of feeding strategy on the performance of a pilot scale vertical flow wetland for the treatment of landfill leachate. Science of the Total Environment, 648, 542-549. https://doi.org/10.1016/j.scitotenv.2018.08.132
  • Candela, L., Álvarez-Benedí, J., Condesso de Melo, M., y Rao, P.S. 1996. Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona, Spain: Transport model parameter estimation. Geoderma, 140(1-2), 8-16. https://doi.org/10.1016/j.geoderma.2007.02.013
  • Chotpantarat, S., Ong, S.K., Sutthirat, C., Osathaphan, K. 2011. Effect of pH on transport of Pb2+, Mn2+, Zn2+ and Ni2+ through lateritic soil: Column experiments and transport modeling. Journal of Environmental Sciences, 23(4), 640-648. https://doi.org/10.1016/S1001-0742(10)60417-2
  • Doulgeris, C., Kypritidou, Z., Kinigopoulou, V., Hatzigiannakis, E. 2023. Simulation of Potassium Availability in the Application of Biochar in Agricultural Soil [Article]. Agronomy, 13(3), Article 784. https://doi.org/10.3390/agronomy13030784
  • Genç-Fuhrman, H., Mikkelsen, P.S., Ledin, A. 2007. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Research, 41(3), 591-602. https://doi.org/10.1016/j.watres.2006.10.024
  • Ghadim, H.B., Hin, L.S. 2017. Simulation of rainfall-runoff response in ecological swale with on-line subsurface detention using infoworks SD [Article]. Water Environment Research, 89(9), 862-870. https://doi.org/10.2175/106143017X14902968254764
  • Gomes, P.C., Fontes, M.P.F., da Silva, A.G., de S. Mendonça, E., Netto, A.R. 2001. Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils. Soil Science Society of America Journal, 65(4), 1115-1121. https://doi.org/10.2136/sssaj2001.6541115x
  • Hong, C.S., Shackelford, C.D., Malusis, M.A. 2016. Adsorptive behavior of zeolite- amended backfills for enhanced metals containment. Journal of Geotechnical and Geoenvironmental Engineering 142(7). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001481
  • Izquierdo, M. 2010. Eliminación de metales pesados en aguas mediante bioadsorción. evaluación de materiales y modelación del proceso PhD Thesis. Universidad de Valencia.
  • Jacques, D., Šimůnek, J. 2010. Notes on HP1 – a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media.
  • Johansson, L. 1997. The use of leca (light expanded clay aggregates) for the removal of phosphorus from wastewater. Water Science and Technology, 35(5), 87-93. https://doi.org/10.1016/S0273-1223(97)00056-5
  • Martínez-Villegas, N., Flores-Vélez, L.M., Domínguez, O. 2004. Sorption of lead in soil as a function of pH: A study case in México [Article]. Chemosphere, 57(10), 1537-1542. https://doi.org/10.1016/j.chemosphere.2004.08.099
  • Mederos, M., Pla, C., Valdes-Abellan, J., Benavente, D. 2024. Evaluating nickel removal efficacy of Filtralite under laboratory conditions: Implications for sustainable urban drainage systems [Article]. Journal of Water Process Engineering, 63, Article 105416. https://doi.org/10.1016/j.jwpe.2024.105416
  • Mlih, R., Bydalek, F., Klumpp, E., Yaghi, N., Bol, R., Wenk, J. 2020. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – a review. Ecological Engineering, 148(1), 105783. https://doi.org/10.1016/j.ecoleng.2020.105783
  • OECD. 2004. OECD Guidelines for the Testing of Chemicals. Leaching in Soil Columns, 312 16.
  • Parkhurst, D.L., Appelo, C.A.J. 2013. Description of Input and Examples for PHREEQC, Version 3. A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations (C.U.S. Geological Survey: Denver, USA, Ed. Vol. Chapter A43) https://pubs.usgs.gov/tm/06/a43/
  • Pla, C., Benavente, D., Valdes-Abellan, J., Jodar-Abellan, A. 2021a. Recovery of Polluted Urban Stormwater Containing Heavy Metals: Laboratory-Based Experiments with Arlita and Filtralite. Water, 13(6), 780. https://doi.org/10.3390/w13060780
  • Pla, C., Benavente, D., Valdes-Abellan, J., Kovacova, Z. 2021b. Effectiveness of two lightweight aggregates for the removal of heavy metals from contaminated urban stormwater. Journal of Contaminant Hydrology, 239, 103778. https://doi.org/10.1016/j.jconhyd.2021.103778
  • Reddy, K.R., Xie, T., Dastgheibi, S. 2014. Removal of heavy metals from urban stormwater runoff using different filter materials. J. Environ. Chem. Eng., 2, 282-292. https://doi.org/10.1016/j.jece.2013.12.020
  • Ricco, R., Konstas, K., Styles, M.J., Richardson, J.J., Babarao, R., Suzuki, K., Scopece, P., Falcaro, P. 2015. Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. Journal of Materials Chemistry A, 3(39), 19822-19831. https://doi.org/10.1039/c5ta04154f
  • Rodríguez-Pacheco, R.L. 2002. Estudio experimental de flujo y transporte de cromo, níquel y manganeso en residuos de la zona minera de Moa (Cuba): Influencia del comportamiento hidromecánico Universidad Politécnica de Cataluña. España. https://doi.org/10.13140/2.1.3934.7849
  • Simunek, J., Van Genuchten, M.T., Sejna, M. 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.
  • Teijón, G., Candela, L., Šimůnek, J., Tamoh, K., Valdes Abellán, J. 2014. Fate and Transport of Naproxen in a Sandy Aquifer Material: Saturated Column Studies and Model Evaluation. Soil and Sediment Contamination: An International Journa, 23(7), 736-750. https://doi.org/10.1080/15320383.2014.869194
  • Vijayaraghavan, K., Badavane, A. 2017. Preparation of growth substrate to improve runoff quality from green roofs: physicochemical characterization, sorption and plant-support experiments. Urban Water Journal, 14(8), 804-810. https://doi.org/10.1080/1573062X.2016.1264429
  • Wang, M., Zhang, D.Q., Su, J., Trzcinski, A.P., Dong, J.W., Tan, S.K. 2017. Future Scenarios Modeling of Urban Stormwater Management Response to Impacts of Climate Change and Urbanization. Clean – Soil, Air, Water, 45(10). https://doi.org/10.1002/clen.201700111
  • Zamarripa, J.L. 2011. Eliminación de cobre y níquel de aguas residuales mediante hidrogeles de hidroxipropil celulosa (HPC)/poliacrilamida (PAAM). TFM. Instituto Tecnológico de Ciudad Madero, México.
  • Zgheib, S., Moilleron, R., Chebbo, G. 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), 6683-6692. https://doi.org/10.1016/j.watres.2011.12.012