Force-based touch approach for volume estimationAproximación de tacto basada en fuerza para estimación de volumen

  1. Castaño Amorós, Julio 1
  2. Trebuchon, Killian 2
  3. Gil, Pablo 1
  4. Mezouar, Youcef 2
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  2. 2 Blaise Pascal University
    info

    Blaise Pascal University

    Clermont-Ferrand, Francia

Revista:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Año de publicación: 2024

Número: 45

Tipo: Artículo

DOI: 10.17979/JA-CEA.2024.45.10763 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Un agarre robótico óptimo no puede limitarse a la estimación de pose de agarre del objeto mediante visión. Se hace necesario el uso de sensores táctiles para conocer las propiedades físicas de los objetos que se agarran. En este trabajo, integramos dos sensores táctiles Contactile basados en la fuerza con una pinza ROBOTIQ 2F-140 y un robot UR5, para estimar el volumen de un recipiente lleno de agua utilizando redes neuronales Perceptrón Multicapa (MLP). Durante la experimentación entrenamos y evaluamos diferentes MLPs variando las fuerzas de entrada (Fx, Fy, Fz) en una tarea de regresión de volumen discreto en un rango de entre 0ml y 300ml. El enfoque preliminar propuesto se compara con un método algebraico basado en el diagrama del equilibrio de fuerzas, demostrando que nuestros resultados son más precisos, obteniendo un valor R2 un 8% superior en el peor de los casos, y del 30% en el mejor.

Referencias bibliográficas

  • Castaño-Amorós, J., Gil, P., 2023. Measuring object rotation via visuo-tactile segmentation of grasping region. IEEE Robotics and Automation Letters 8 (8), 4537–4544. DOI: 10.1109/LRA.2023.3285471 DOI: https://doi.org/10.1109/LRA.2023.3285471
  • Chareyre, M., Fournier, P., Moras, J., Mezouar, Y., Bourinet, J.-M., 2022. Towards generic object property estimation using unsupervised reinforcement learning. In: Int. Conf. on Intelligent Robots and Systems (IROS). Workshop on Mobile Manipulation and Embodied Intelligence: Challenges and Opportunities. Kyoto, Japan. URL: hal.science/hal-03927900
  • Chi, C., Sun, X., Xue, N., Li, T., Liu, C., 2018. Recent progress in technologies for tactile sensors. Sensors 18 (4). DOI: 10.3390/s18040948 DOI: https://doi.org/10.3390/s18040948
  • Dikhale, S., Patel, K., Dhingra, D., Naramura, I., Hayashi, A., Iba, S., Jamali, N., 2022. Visuotactile 6d pose estimation of an in-hand object using vision and tactile sensor data. IEEE Robotics and Automation Letters 7 (2), 2148–2155. DOI: 10.1109/LRA.2022.3143289 DOI: https://doi.org/10.1109/LRA.2022.3143289
  • Huang, H.-J., Guo, X., Yuan, W., 2022. Understanding dynamic tactile sensing for liquid property estimation. In: Robotics: Science and Systems (RSS). IFRR, New York, USA. DOI: 10.48550/arXiv.2205.087716. DOI: https://doi.org/10.15607/RSS.2022.XVIII.072
  • Khamis, H., Xia, B., Redmond, S. J., 2019. A novel optical 3d force and displacement sensor – towards instrumenting the papillarray tactile sensor. Sensors and Actuators A: Physical 291, 174–187. DOI: 10.1016/j.sna.2019.03.051 DOI: https://doi.org/10.1016/j.sna.2019.03.051
  • Lambeta, M., Chou, P.-W., Tian, S., Yang, B., Maloon, B., Most, V. R., Stroud, D., Santos, R., Byagowi, A., Kammerer, G., Jayaraman, D., Calandra, R., 2020. Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robotics and Automation Letters 5 (3), 3838–3845. DOI: 10.1109/LRA.2020.2977257 DOI: https://doi.org/10.1109/LRA.2020.2977257
  • Silva, A., Brites, M., Paulino, T., Moreno, P., 2019. Estimation of lightweight object’s mass by a humanoid robot during a precision grip with soft tactile sensors. In: Int. Conf. on Robotic Computing (IRC). IEEE, pp. 344–348. DOI: 10.1109/IRC.2019.00062 DOI: https://doi.org/10.1109/IRC.2019.00062
  • Yuan, W., Dong, S., Adelson, E. H., 2017. Gelsight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 17 (12). DOI: 10.3390/s17122762 DOI: https://doi.org/10.3390/s17122762
  • Zapata-Impata, B. S., Gil, P., Torres, F., 2019a. Learning spatio temporal tactile features with a convlstm for the direction of slip detection. Sensors 19 (3). DOI: 10.3390/s19030523 DOI: https://doi.org/10.3390/s19030523
  • Zapata-Impata, B. S., Gil, P., Torres, F., 2019b. Tactile-driven grasp stability and slip prediction. Robotics 8 (4). DOI: 10.3390/robotics8040085 DOI: https://doi.org/10.3390/robotics8040085
  • Zhang, Y., Yuan, W., Kan, Z., Wang, M. Y., 2019. Towards learning to detect and predict contact events on vision-based tactile sensors. In: 3rd. Conf.on Robot Learning (CoRL). IFRR, Osaka, Japan. DOI: 10.48550/arXiv.1910.03973
  • Zhu, F., Jia, R., Yang, L., Yan, Y., Wang, Z., Pan, J., Wang, W., 2022. Visualtactile sensing for real-time liquid volume estimation in grasping. In: Int. Conf. on Intelligent Robots and Systems (IROS). IEEE/RSJ, Kyoto, Japan, pp. 12542–12549. DOI: 10.1109/IROS47612.2022.9981153 DOI: https://doi.org/10.1109/IROS47612.2022.9981153