Desde estrategias aditivas hasta estrategias proporcionales: Características identificadas con estudiantes de Educación Básica Media y Superior de Ecuador
- Ceneida Fernández 1
- Pedro Ivars 1
- Francisco Rojas 2
- Salvador Castillo 1
-
1
Universitat d'Alacant
info
-
2
Universidad Central del Ecuador
info
ISSN: 1665-5826, 0187-8298
Año de publicación: 2024
Volumen: 36
Número: 2
Páginas: 68-91
Tipo: Artículo
Otras publicaciones en: Educación matemática
Resumen
Previous studies have shown that students move, when solving proportional and additive situations, from using additive relations indiscriminately to using multiplicative relations indiscriminately. In addition, the type of ratio and the nature of the quantities seem to influence the use of these relations. This study explores the strategies used by Ecuadorian middle and high school students when solving additive and proportional missing-value problems with integer/non-integer ratios and discrete/ continuous quantities. The results show a different pattern: when students stop using the additive strategy indiscriminately, they do not use proportionality indiscriminately, they use incorrect procedures to solve proportional problems. Moreover, both variables were significantly influenced: (I) additive strategies were used more with non-integer ratios/relations and proportional strategies were used more with integer ratios/relations; and (II) proportional strategies were used more in proportional problems with discrete quantities and additive strategies were used more in additive problems with continuous quantities
Referencias bibliográficas
- Begolli, K. N., Booth, J. L., Holmes, C. A., y Newcombe, N. S. (2020). How many apples make a quarter? The challenge of discrete proportional formats. Journal of Experimental Child Psychology, 192, 104774. https://doi.org/10.1016/j.jecp.2019.104774
- Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C., y Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics, 36(3), 247-273. https://doi.org/10.1023/a:1003235712092
- Boyer, T. W., y Levine, S. C. (2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615–620. https://doi.org/10.1037/a0039010
- Boyer, T. W., Levine, S. C., y Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478–1490. https:// doi.org/10.1037/a0013110
- Cramer,K. A., Post, T., y Currier, S. (1993). Learning and teaching ratio and proportion: Research implications: Middle grades mathematics. En D. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159-178). Macmillan Publishing Company.
- De Bock, D., Van Dooren, W., Janssens, D., y Verschaffel, L. (2007). The illusion of linearity: From analysis to improvement. Springer Science & Business Media.
- Degrande, T., Verschaffel, L., y Van Dooren, W. (2020). To add or to multiply in open problems? Unraveling children’s relational preference using a mixed-method approach. Educational Studies in Mathematics, 104(3), 405-430. https://doi.org/10.1007/s10649-020-09966-z
- Fernández, C., y Llinares, S. (2011). De la estructura aditiva a la multiplicativa: efecto de dos variables en el desarrollo del razonamiento proporcional. Infancia y Aprendizaje, 34(1), 67-80. https://doi.org/10.1174/021037011794390111
- Fernández, C., y Llinares, S. (2012). Características del desarrollo del razonamiento proporcional en la Educación Primaria y Secundaria. Enseñanza de las Ciencias, 30(1), 129-142. https://doi.org/10.5565/rev/ec/v30n1.596
- Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., y Verschaffel, L. (2011). Effect on number structure and nature of quantities on secondary school students’ proportional reasoning”. Studia Psychologica, 53(1), 69-81.
- Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., y Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 27(3), 421-438. https://doi.org/10.1007/s10212-011-0087-0
- Freudenthal, H. (1999). Ratio and proportionality. En H. Freudenthal (Ed.), Didactical phenomenology of mathematical structures (pp. 178–209).Kluwer Academics Publishers.
- Harel, G., y Behr, M. (1989). Structure and hierarchy of missing-value proportion problems and their representations. Journal of Mathematical Behavior, 8(1), 77-119.
- Harel, G., y Confrey, J. (1994). The development of multiplicative reasoning in the learning of mathematics. State University of New York Press.
- Hart, K. (1988). Ratio and proportion. En J. Hiebert y M. Behr (Eds.), Number concepts and operations in the middle grades, (pp. 198-219).National Council of Teachers of Mathematics and Lawrence Erlbaum Associates.
- Hurst, M. A., y Cordes, S. (2018). Attending to relations: Proportional reasoning in 3- to 6-yearold children. Developmental Psychology, 54(3), 428–439. https://doi.org/10.1037/dev0000440
- Jeong, Y., Levine, S. C., y Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237-256. https://doi.org/10.1080/15248370701202471
- Jiang, R., Li, X., Fernández, C., Fu, X. (2017). Students’ performance on missing-value word problems: a cross-national developmental study. European Journal of Psychology of Education 32, 551–570. https://doi.org/10.1007/s10212-016-0322-9
- Kaput, J. y West, M. M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. En G. Harel y J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics, (pp. 235-287). State University of New York Press. Karplus, R., Pulos, S., & Stage, E. K. (1983). Early adolescents’ proportional reasoning on ‘rate’ problems. Educational Studies in Mathematics, 14(3), 219-233. https://doi. org/10.1007/BF00410539
- Lamon, S. (1994). Ratio and proportion: Cognitive foundations in unitizing and norming. En G. Harel y J. Confrey (Eds.), The development of multiplicative reasoning in the learning of Mathematics, (pp. 89–120). State University of New York Press.
- Lamon, S. (1999). Teaching fractions and ratios for understanding. Essential content knowledge and instructional strategies for teacher. Lawrence Erlbaum Associates. Ley Orgánica de Educación Intercultural (LOEI), 17 de febrero de 2016, relativa a los currículos de educación general básica para los subniveles de preparatoria, elemental, media y superior; y, el currículo de nivel de bachillerato general unificado, con sus respectivas cargas horarias. Acuerdo Ministerial Nro. MINEDUC-ME-2016- 00020-A, de 17 de febrero de 2016.
- Lo, J., y Watanabe, T. (1997). Developing ratio and proportion schemes: A story of a fifth grader. Journal for Research in Mathematics Education, 28(2), 216-236. https://doi. org/10.5951/jresematheduc.28.2.0216
- Misailidou, C., y Williams, J. (2003). Diagnostic assessment of children’s proportional reasoning. The Journal of Mathematical Behavior, 22(3), 335-368. https://doi. org/10.1016/S0732-3123(03)00025-7
- Modestou, M., y Gagatsis, A. (2007). Students’ improper proportional reasoning: A result of the epistemological obstacle of “linearity”. Educational Psychology, 27(1), 75-92. https://doi.org/10.1080/01443410601061462
- Moss, J., y Case, R. (1999). Developing children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122-147. https://doi.org/10.2307/749607
- Pi̇şki̇n, M. (2020). Investigation of middle school students’ solution strategies in solving proportional and non-proportional problems. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(1), 1–14. https://doi.org/10.16949/turkbilmat.560349
- Siemon, D., Breed, M., y Virgona, J. (2005). From additive to multiplicative thinking: The big challenge of the middle years. En J. Mousley, L. Bragg y C. Campbell (Eds.), Proceedings of the 42nd Conference of the Mathematical Association of Victoria, (pp. 278– 286). Mathematical Association of Victoria.
- Singer, J., Kohn, A., y Resnick, L. (1997). Knowing about proportions in different contexts. En T. Nunes y P. Bryant (Eds.), Learning and teaching mathematics. An international perspective, (pp.115-132). Psychology Press Ltd. Publishers.
- Spinillo, A. G., y Bryant, P. E. (1999). Proportional reasoning in young children: Part-part comparisons about continuous and discontinuous quantity. Mathematical Cognition, 5(2), 181-197. https://doi.org/10.1080/135467999387298
- Steinthorsdottir, O. (2006). Proportional reasoning: Variable influencing the problems difficulty level and one’s use of problem solving strategies. En J. Novotná, H. Moraová, M. Krátká y N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education vol. 5, (pp. 169-176). PME.
- Tourniaire, F., y Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, 181-204.
- Van Dooren, W., De Bock, D., y Verschaffel, L. (2010). From addition to multiplication… and back: The development of students’ additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 360-381. https://doi.org/10.1080/07370008.2010.488306
- Van Dooren, W., De Bock, D., Evers, M., y Verschaffel, L. (2009). Students’ overuse of proportionality on missing-value problems: How numbers may change solutions. Journal for Research in Mathematics Education, 40(2), 187-211. https://www.jstor.org/stable/40539331
- Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., y Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and instruction, 23(1), 57-86. https://doi.org/10.1207/ s1532690xci2301_3 Van Dooren, W., De Bock, D., Janssens, D., y Verschaffel, L. (2008). The linear imperative: An inventory and conceptual analysis of students’ overuse of linearity. Journal for Research in Mathematics Education, 39(3), 311-342. https://doi.org/10.2307/30034972
- Vanluydt, E., Degrande, T., Verschaffel, L., y Van Dooren, W. (2020). Early stages of proportional reasoning: a cross-sectional study with 5-to 9-year-olds. European Journal of Psychology of Education, 35(3), 529-547. https://doi.org/10.1007/s10212-019-00434-8
- Verschaffel, L., Greer, B., y De Corte, E. (2007). Whole number concepts and operations. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning, (pp. 557–628). Information Age Publishing.