Materiales carbonosos jerarquizados derivados de la borra de café para su aplicación en supercondensadores

  1. Estefanía Arredondo-Ferrer
  2. Robison Buitrago-Sierra
  3. Diana López
Revista:
Revista de la Academia Colombiana de ciencias exactas, físicas y naturales

ISSN: 0370-3908

Año de publicación: 2022

Volumen: 46

Número: 178

Páginas: 233-247

Tipo: Artículo

DOI: 10.18257/RACCEFYN.1585 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de la Academia Colombiana de ciencias exactas, físicas y naturales

Resumen

Resumen El uso de residuos de borra de café para la obtención de carbones activados mediante carbonización hidrotérmica se ha abordado de forma poco sistemática en la literatura, lo que sumado a la necesidad de mejorar los sistemas de almacenamiento de energía, exige la realización de estudios sistemáticos de estos procesos. En el presente trabajo se obtuvieron carbones activados con porosidad jerarquizada a partir de biomasa por medio de carbonización hidrotérmica y activaciones químicas. Se analizó el efecto del tiempo y la temperatura de la carbonización hidrotérmica de la borra de café, con el fin de obtener un alto grado de carbonización y mejores rendimientos de reacción. En cuanto a la porosidad, se utilizaron tres agentes directores de estructura para obtener una distribución de poros jerarquizada. Con respecto al desarrollo de los materiales, el análisis termogravimétrico y el elemental confirmaron la obtención de un material mucho más carbonizado con la carbonización hidrotérmica a 250 °C durante 6 h, en tanto que a 200 °C durante 6 h se logró un mayor rendimiento de reacción. Los carbones activados se caracterizaron utilizando isotermas y micrografías de microscopía electrónica de barrido (MEB) para el análisis de la porosidad y el área superficial, y se comprobó que todos los materiales sintetizados obtuvieron una distribución jerárquica de poros. Asimismo, se evaluó el comportamiento de los materiales como electrodos para supercondensadores, evidenciándose una mejor capacitancia específica con el carbón obtenido por activación con hidróxido de potasio (KOH).

Referencias bibliográficas

  • Adan-mas, A.,Alcaraz, L.,Arévalo-cid, P.,López-Gómez, F. A.,Montemor, F.. (2021). Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Management. 120. 280
  • Antonietti, M.,Wu, L.,Yu, S.-H.,Wang, K.,Hu, B.,Titirici, M.-M.. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials. 22. 813
  • Axelsson, L.,Franzén, M.,Ostwald, M.,Berndes, G.,Lakshmi, G.,Ravindranath, N. H.. (2012). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining. 6. 246
  • Ballesteros, L. F.,Teixeira, J. A.,Mussatto, S. I.. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology. 7. 3493
  • Bedia, J.,Peñas-Garzón, M.,Gómez-Avilés, A.,Rodriguez, J. J.,Belver, C.. (2020). Review on Activated Carbons by Chemical Activation with FeCl3. C - Journal of Carbon Research. 6. 21
  • Berrueta, A.,Ursúa, A.. (2019). Supercapacitors : Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE. 7. 50869
  • Blinová, L.,Sirotiak, M.,Bartosová, A.,Soldán, M.. (2017). Review: tilization of waste from coffee production. Faculty of Materials Science and Technology in Trnava. 25. 91-101
  • Burnham, A. K.. (2018). Encyclopedia of Petroleum Geoscience. Encyclopedia of Earth Sciences Series. Springer. Cham.
  • Calvo, E. G.,Menéndez, J. A.,Arenillas, A.. (2013). Microporous and mesoporous materials microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous And Mesoporous Materials. 168. 206
  • Campos-Vega, R.,Loarca-Piña, G.,Vergara-Castañeda, H. A.,Dave Oomah, B.. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology. 45. 24-36
  • Chen, C.,Sun, Æ. X.,Jiang, Æ. X.,Niu, D.,Yu, Æ. A.,Liu, Æ. Z.,Guang, Æ. J.. (2009). A Two-Step Hydrothermal Synthesis Approach to Monodispersed Colloidal Carbon Spheres. Nanoscales Res Lett. 4. 971
  • Dai, C.,Wan, J.,Yang, J.,Qu, S.,Jin, T.,Ma, F.,Shao, J.. (2018). H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors. Applied Surface Science. 444. 105
  • Donar, Y. O.,Çaǧlar, E.,Sinaǧ, A.. (2016). Preparation and characterization of agricultural waste biomass based hydrochars. Fuel. 183. 366
  • Elaiyappillai, E.,Srinivasan, R.,Johnbosco, Y.,Devakumar, P.,Murugesan, K.,Kesavan, K.,Johnson, P. M.. (2019). Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science. 486. 527
  • Rouquerol, J.,Rouquerol, F.,Llewellyn, P.,Maurin, G.,Sing, K.. (1999). Adsorption by powders and porous solids: principles, methodology and applications. Academic Press.
  • Gao, Y.,Yue, Q.,Gao, B.,Li, A.. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment. 746.
  • Ghosh, D.,Giri, S.,Basu, T.,Mandal, M.,Das, C. K.. (2014). a MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions. 43. 11067
  • Simon, P.,Gogotsi, Y.. (2017). Materials for electrochemical capacitors. Nature materials. 7. 84554
  • Guerrera, J. V.,Burrow, J. N.,Eichler, J. E.,Rahman, M. Z.,Namireddy, M. V.,Friedman, K. A.,Coffman, S. S.,Calabro, D. C.,Mullins, C. B.,Mullins, C. B.. (2020). Evaluation of Two Potassium-Based Activation Agents for the Production of Oxygen- A nd Nitrogen-Doped Porous Carbons. Energy and Fuels. 34. 6101
  • He, X.,Li, R.,Qiu, J.,Xie, K.,Ling, P.. (2012). Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon. 50. 4911
  • (2019). International Energy Agency-IEA World Energy Outlook 2019. World Energy Outlook Sereies.
  • Kalderis, D.,Kotti, M. S.,Méndez, A.,Gascó, G.. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth. 5. 477
  • Kambo, H. S.,Dutta, A.. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews. 45. 359
  • Kang, S.,Li, X.,Fan, J.,Chang, J.. (2012). Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Industrial and Engineering Chemistry Research. 51. 9023
  • Kannan, S.,Gariepy, Y.,Raghavan, G. S. V.. (2017). Optimization and Characterization of Hydrochar Derived from Shrimp Waste. Energy and Fuels. 31. 4068
  • Kar, K K.,Kar, K. K.. (2020). Handbook of nanocomposite supercapacitor materials I. Springer.
  • Kruse, A.,Dinjus, E.. (2007). Hot compressed water as reaction medium and reactant. 2. Degradation reactions. Journal of Supercritical Fluids. 41. 361
  • Laurio, M. V. O.,Slater, C. S.. (2020). Process scale-up, economic, environmental assessment of vibratory nanofiltration of coffee extracts for soluble coffee production process intensification. Clean Technologies and Environmental Policy. 22. 1891
  • Li, S.,Han, K.,Li, J.,Li, M.,Lu, C.. (2017). Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials. 243. 291-300
  • Li, Z.,Chen, J.. (2008). An impedance-based approach to predict the state-of-charge for carbon-based supercapacitors. Microelectronic Engineering. 85. 1549
  • Libra, J. A.,Ro, K. S.,Kammann, C.,Funke, A.,Berge, N. D.,Neubauer, Y.,Titirici, M. M.,Fühner, C.,Bens, O.,Kern, J.,Emmerich, K. H.. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2. 71-106
  • Liu, H.,Cui, W.,Jin, L.,Wang, C.,Xia, Y.. (2009). Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry. 19. 3661
  • Machnikowski, J.,Lorenc-Grabowska, E.. (2005). Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50. 1197
  • Mastragostino, M.,Soavi, F.,Arbizzani, C.. (2002). Advances in Lithium-Ion Batteries. Springer. Boston, MA.
  • Mukaida, M.,Watanabe, Y.,Sugano, K.,Terada, K.. (2015). Identification and physicochemical characterization of caffeine-citric acid co-crystal polymorphs. European Journal of Pharmaceutical Sciences. 79. 61
  • Oliveira, L. C. A.,Pereira, E.,Guimaraes, I. R.,Vallone, A.,Pereira, M.,Mesquita, J. P.,Sapag, K.. (2009). Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials. 165. 87-94
  • Rincón, J. M.,Rincón, S.,Guevara, P.,Ballén, D.,Morales, J. C.,Monroy, N.. (2015). Producción de carbón activado mediante métodos físicos a partir de carbón de El Cerrejón y su aplicación en el tratamiento de aguas residuales provenientes de tintorerías. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 39. 171
  • Sevilla, M.,Fuertes, A. B.. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 47. 2281
  • Sevilla, M.,Al-Jumialy, A. S. M.,Fuertes, A. B.,Mokaya, R.. (2018). Optimization of the Pore Structure of Biomass-Based Carbons in Relation to Their Use for CO2Capture under Low-and High-Pressure Regimes. ACS Applied Materials and Interfaces. 10. 1623
  • Subramanian, V.,Luo, C.,Stephan, A. M.,Nahm, K. S.,Thomas, S.,Wei, B.. (2007). Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C. 111. 7527
  • Vardon, D. R.,Moser, B. R.,Zheng, W.,Witkin, K.,Evangelista, R. L.,Strathmann, T. J.,Rajagopalan, K.,Sharma, B. K.. (2013). Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustainable Chemistry and Engineering. 1. 1286
  • Verhagen, S.. (2018). Improving the Value of Spent Coffee Grounds by Converting Carbohydrates into Fermentable Sugars Improving the Value of Spent Coffee Grounds by Converting Carbohydrates into Fermentable Sugars.
  • Vinayagam, M.,Suresh, R.,Sivasamy, A.,Lucia, A.,Barros, F. De.. (2020). Biomass and Bioenergy Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass and Bioenergy. 143. 105838
  • Wu, F.,Tseng, R.,Hu, C.,Wang, C.. (2005). Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources. 144. 302
  • Yakaboylu, G. A.,Jiang, C.,Yumak, T.,Zondlo, J. W.,Wang, J.,Sabolsky, E. M.. (2021). Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renewable Energy. 163. 276
  • Yang, F.,Wang, D.,Zhao, Y.,Tsui, K. L.,Bae, S. J.. (2018). A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy. 145. 486
  • Yun, Y. S.,Park, M. H.,Hong, S. J.,Lee, M. E.,Park, Y. W.,Jin, H. J.. (2015). Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Applied Materials and Interfaces. 7. 3684
  • Zhang, G.,Chen, Y.,Chen, Y.,Guo, H.. (2018). Activated biomass carbon made from bamboo as electrode material for supercapacitors. Materials Research Bulletin. 102. 391
  • Zhang, M.,He, L.,Shi, T.,Zha, R.. (2018). Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. Chemistry of Materials. 30. 7391