Eliminación del color de las soluciones de tinte índigo carmín utilizando fibras fique modificadas con nanopartículas de ZnO

  1. Llano, María Alejandra 1
  2. Guzmán-Aponte, Álvaro 1
  3. Cadavid-Mora, Yuliana
  4. Buitrago-Sierra, Robinson 1
  5. Cadena-Chamorro, Edith Marleny
  6. Santa, Juan Felipe
  1. 1 Instituto Tecnológico Metropolitano ITM
Revista:
Respuestas

ISSN: 0122-820X 2422-5053

Any de publicació: 2020

Volum: 25

Número: 2

Pàgines: 147-158

Tipus: Article

DOI: 10.22463/0122820X.2956 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Altres publicacions en: Respuestas

Resum

Zinc oxide is a useful and recyclable catalyst. In this study, fique fibers were modified with zinc oxide (ZnO) nanoparticles to remove color from indigo carmine (IC) solutions. ZnO nanoparticles were synthesized by precipitation method and the fibers were ex-situ and in-situ modified. The fibers and the nanoparticles were characterized using different techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy and Scanning Electron Microscopy (SEM). The color removal rate was monitored by using an UV/Vis spectrophotometer. Nanoparticles with a mean diameter in the nanoscale and a typical hexagonal structure were obtained, and they were effectively deposited on the fibers. The highest color removal was obtained with the ex-situ fibers (ZnO-Ex/fique) 90 % in 180 minutes. Color removal by in-situ fibers (ZnO-In/fique) was 70 % after 180 min. From the results, ZnO nanoparticles may be an excellent catalyst for removal IC dye aqueous solutions under UV-C light

Referències bibliogràfiques

  • A. Angelis-Dimakis, A. Alexandratou, A. Balzarini, Value chain upgrading in a textile dyeing industry, J. Clean. Prod. 138 (2016) 237–247. https://doi.org/10.1016/j.jclepro.2016.02.137.
  • A.J. Cohen, M. Brauer, R. Burnett, H.R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, V. Feigin, G. Freedman, B. Hubbell, A. Jobling, H. Kan, L. Knibbs, Y. Liu, R. Martin, L. Morawska, C.A. Pope, H. Shin, K. Straif, G. Shaddick, M. Thomas, R. van Dingenen, A. van Donkelaar, T. Vos, C.J.L. Murray, M.H. Forouzanfar, Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet. 389 (2017) 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6.
  • C. Becerra-Castro, A.R. Lopes, I. Vaz-Moreira, E.F. Silva, C.M. Manaia, O.C. Nunes, Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health, Environ. Int. 75 (2015) 117–135. https://doi.org/10.1016/j.envint.2014.11.001.
  • S.W. FitzGerald, P.L. Bishop, Two stage anaerobic/aerobic treatment of sulfonated azo dyes, J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 30 (1995) 1251–1276. https://doi.org/10.1080/10934529509376264.
  • A. Roessler, D. Crettenand, O. Dossenbach, W. Marte, P. Rys, Direct electrochemical reduction of indigo, Electrochim. Acta. 47 (2002) 1989–1995. https://doi.org/10.1016/S0013-4686(02)00028-2.
  • R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu, Z.Z. Yu, Graphene Oxide/Chitosan Aerogel Microspheres with Honeycomb-Cobweb and Radially Oriented Microchannel Structures for Broad-Spectrum and Rapid Adsorption of Water Contaminants, ACS Appl. Mater. Interfaces. 9 (2017) 21809–21819. https://doi.org/10.1021/acsami.7b04655.
  • S. Roy, N.R. Singha, Polymeric nanocomposite membranes for next generation pervaporation process: Strategies, challenges and future prospects, Membranes (Basel). 7 (2017). https://doi.org/10.3390/membranes7030053.
  • S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal, M. Alizadeh Fard, Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes, J. Hazard. Mater. 219–220 (2012) 35–42. https://doi.org/10.1016/j.jhazmat.2012.03.013.
  • S. Ammar, M.A. Oturan, L. Labiadh, A. Guersalli, R. Abdelhedi, N. Oturan, E. Brillas, Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst, Water Res. 74 (2015) 77–87. https://doi.org/10.1016/j.watres.2015.02.006.
  • B. Ekka, M.K. Sahu, R.K. Patel, P. Dash, Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: Optimization using statistical design, Water Resour. Ind. (2016). https://doi.org/10.1016/j.wri.2016.08.001.
  • A. Martinench, DEGRADACIÓN FOTOCATALÍTICA HOMOGÉNEA Y HETEROGÉNEA DE VAPOR CONDENSADO DE COCCIÓN GENERADO EN EL PROCESAMIENTO DE SUBPRODUCTOS AVÍCOLAS, Pontif. Univ. Catol. Del Peru. 8 (2014) 44.
  • S. Sakthivel, B. Neppoiian, M. Palanichamy, B. Arabindoo, V. Murugesan, Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surfaces., Water Sci. Technol. 44 (2001) 211–8. http://www.ncbi.nlm.nih.gov/pubmed/11695461 (accessed October 8, 2019).
  • M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2 -ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorg. Chem. 51 (2012) 7764–7773. https://doi.org/10.1021/ic300794j.
  • A.G.S. Prado, L.B. Bolzon, C.P. Pedroso, A.O. Moura, L.L. Costa, Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation, Appl. Catal. B Environ. 82 (2008) 219–224. https://doi.org/10.1016/j.apcatb.2008.01.024.
  • J. Yang, X. Wang, J. Dai, J. Li, Efficient visible-light-driven photocatalytic degradation with Bi2O3 coupling silica doped TiO2, Ind. Eng. Chem. Res. 53 (2014) 12575–12586. https://doi.org/10.1021/ie501850m.
  • W. Kim, T. Tachikawa, T. Majima, W. Choi, Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: Enhanced activity for H2 production and dechlorination of CCl4, J. Phys. Chem. C. 113 (2009) 10603–10609. https://doi.org/10.1021/jp9008114.
  • A.H. Ali, Photocatalytic Degradation and COD Removal for Indigo Carmine Dye Using aqueous Suspension of Zinc Oxide, 51 (2013) 288–300.
  • A. Al-Taie, H.M. Dah, Photocatalytic degradation of indigo carmine by ZnO photocatalyst under visible light irradiation, Baghdad Sci. J. 14 (2017) 582–587. https://doi.org/10.21123/bsj.2017.14.3.0582.
  • M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi, Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies, J. Colloid Interface Sci. 288 (2005) 371–376. https://doi.org/10.1016/J.JCIS.2005.03.020.
  • M.S. Hassan, Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation, Radiat. Phys. Chem. 115 (2015) 55–61. https://doi.org/10.1016/j.radphyschem.2015.05.038.
  • G. Asgari, B. Ramavandi, S. Farjadfard, Abatement of azo dye from wastewater using bimetal-chitosan, Sci. World J. 2013 (2013). https://doi.org/10.1155/2013/476271.
  • S. Syafalni, I. Abustan, I. Dahlan, C.K. Wah, G. Umar, Treatment of dye wastewater using granular activated carbon and zeolite filter, Mod. Appl. Sci. 6 (2012) 37–51. https://doi.org/10.5539/mas.v6n2p37.
  • S.A. Ovalle-Serrano, V.S. Carrillo, C. Blanco-Tirado, J.P. Hinestroza, M.Y. Combariza, Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication, Cellulose. 22 (2015) 1841–1852. https://doi.org/10.1007/s10570-015-0620-4.
  • S. Khosravian, M. Montazer, R.M.A. Malek, T. Harifi, In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodology, Carbohydr. Polym. 132 (2015) 126–133. https://doi.org/10.1016/J.CARBPOL.2015.05.085.
  • L.E. Shi, X.J. Fang, Z.L. Zhang, T. Zhou, D. Jiang, H.H. Wu, Z.X. Tang, Preparation of nano-zno using sonication method and its antibacterial characteristics, Int. J. Food Sci. Technol. 47 (2012) 1866–1871. https://doi.org/10.1111/j.1365-2621.2012.03043.x.
  • X. Li, L.G. Tabil, S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, J. Polym. Environ. 15 (2007) 25–33. https://doi.org/10.1007/s10924-006-0042-3.
  • H. Wang, M. Zheng, J. Chen, G. Ji, J. Cao, Synthesis of MnO2 Microfiber with Secondary Nanostructure by Cotton Template, J. Nanotechnol. 2010 (2010) 1–5. https://doi.org/10.1155/2010/479172.
  • S. Jain, G. Bhanjana, S. Heydarifard, N. Dilbaghi, M.M. Nazhad, V. Kumar, K.H. Kim, S. Kumar, Enhanced antibacterial profile of nanoparticle impregnated cellulose foam filter paper for drinking water filtration, Carbohydr. Polym. 202 (2018) 219–226. https://doi.org/10.1016/j.carbpol.2018.08.130.
  • A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method, J. Mol. Struct. 1196 (2019) 332–337. https://doi.org/10.1016/j.molstruc.2019.06.084.
  • A. Raja, S. Ashokkumar, R. Pavithra Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R. Ganapathi Raman, M. Swaminathan, Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity, J. Photochem. Photobiol. B Biol. 181 (2018) 53–58. https://doi.org/10.1016/j.jphotobiol.2018.02.011.
  • A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method, J. Mol. Struct. 1196 (2019) 332–337. https://doi.org/10.1016/j.molstruc.2019.06.084.
  • J.I. Morán, V.A. Alvarez, V.P. Cyras, A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose. 15 (2008) 149–159. https://doi.org/10.1007/s10570-007-9145-9.
  • W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, P. Chen, Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process, Cellulose. 18 (2011) 433–442. https://doi.org/10.1007/s10570-011-9497-z.
  • E. Abraham, B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, R. Anandjiwala, Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach, Carbohydr. Polym. 86 (2011) 1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034.
  • G. Ramadoss, K. Muthukumar, Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production, Biochem. Eng. J. 83 (2014) 33–41. https://doi.org/10.1016/j.bej.2013.11.013.
  • K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, V. Chabukswar, Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes, J. Macromol. Sci. Part A Pure Appl. Chem. 51 (2014) 941–947. https://doi.org/10.1080/10601325.2014.967078.
  • Q. Qiao, S. Singh, S.L. Lo, Y. Li, J. Jin, L. Wang, Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes: Preparation, characterization, optimization, and mineralization, J. Taiwan Inst. Chem. Eng. 84 (2018) 110–122. https://doi.org/10.1016/j.jtice.2018.01.008.
  • S. Wang, H. Luo, X. Xu, Y. Bai, X. Song, J. Zhang, J. Li, J. Zhao, C. Tang, Enhanced organic dye removal of porous BN fibers supported Ta 3 N 5 nanoparticles under visible light irradiation, Surfaces and Interfaces. 5 (2016) 39–46. https://doi.org/10.1016/j.surfin.2016.10.001.
  • J. Miao, Z. Jia, H.B. Lu, D. Habibi, L.C. Zhang, Heterogeneous photocatalytic degradation of mordant black 11 with ZnO nanoparticles under UV-Vis light, J. Taiwan Inst. Chem. Eng. 45 (2014) 1636–1641. https://doi.org/10.1016/j.jtice.2013.11.007.
  • S.L. Mora, Y. Cadavid, E.M. Cadena Ch, J.M. Vélez, R. Buitrago-Sierra, J.F. Santa, Plantain fibers obtained from pseudostems residues for efficient color degradation of indigo carmine dye, Ind. Crops Prod. 126 (2018) 302–308. https://doi.org/10.1016/j.indcrop.2018.10.030.