Wear resistance and hardness of nanostructured hardfacing coatings•

  1. Franklin Paz Triviño 1
  2. Robison Buitrago Sierra 2
  3. Juan Felipe Santa Marín
  1. 1 Tribology and Surfaces Group, Universidad Nacional de Colombia, Medellín, Colombia
  2. 2 Facultad de Ingenierías. Instituto Tecnológico Metropolitano. Medellín-Colombia
Revista:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

ISSN: 0012-7353

Año de publicación: 2020

Volumen: 87

Número: 214

Páginas: 146-154

Tipo: Artículo

DOI: 10.15446/DYNA.V87N214.85683 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

Resumen

El desgaste abrasivo es un problema importante en aplicaciones industriales. El desgaste de las herramientas en la industria minera es un problema costoso y reduce el tiempo de funcionamiento de los equipos. En este trabajo se evaluaron recubrimientos soldados de alta resistencia al desgaste obtenidos mediante un proceso manual de arco metálico. La microestructura fue analizada por medio de microscopía óptica y electrónica. Se realizaron pruebas de desgaste ASTM G99 (pin-on-disc) y ASTM G65 (arena seca / rueda de goma), y se inspeccionaron las superficies desgastadas para comprender los mecanismos de desgaste. Los resultados muestran que el recubrimiento tiene una microestructura hipereutéctica compuesta de carburos de austenita del tipo NbC y M7C3. El tamaño de los nanocarburos fue de 91 nm; y el contenido del volumen, 5.3%. Los valores de dureza se encontraron alrededor de 1029 HV200 g, 15 seg.. Se observaron bajas pérdidas de masa en el recubrimiento generadas por la microestructura hipereutéctica. Los principales mecanismos de desgaste fueron la microfractura y desprendimiento de carburos y microcorte en la matriz

Referencias bibliográficas

  • Lancaster, J.K., ASM handbook, vol. 18, friction, lubrication and wear technology, Tribology International, 26(4), pp. 293-294, 1993. DOI: 10.1016/0301-679X(93)90010-X
  • Chaynes, P. and Farmer, H.N., Friction and wear behavior of hardfacing alloys, ASM Handbook., 18, 1992, 758 P.
  • Armao, F., Byall, L., Kotecki, D. and Miller, D., Gas metal arc welding: product and procedure selection, Cleval. Lincoln Global. Inc, 2014.
  • Khan, M.I., Welding science and technology. New Age International, 2007.
  • Balasubramanian, V., Varahamoorthy, R., Ramachandran, C. and Muralidharan, C., Selection of welding process for hardfacing on carbon steels based on quantitative and qualitative factors., International Journal of Advanced Manufacture Technology., 40(9/10), pp. 887-897. 2009. DOI: 10.1007/s00170-008-1406-8
  • Fan, C., Chen, M.C., Chang, C.M. and Wu, W., Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys, Surface and Coatings Technology., 201(3-4), pp. 908-912, 2006. DOI: 10.1016/j.surfcoat.2006.01.010
  • Buchely, M.F., Gutierrez, J.C., León, L.M. and Toro, A., The effect of microstructure on abrasive wear of hardfacing alloys, in Wear, 259(1-6), pp. 52-61, 2005, DOI: 10.1016/j.wear.2005.03.002
  • Dilawary, S.A.A., Motallebzadeh, A., Atar, E. and Cimenoglu, H., Influence of Mo on the high temperature wear performance of NiCrBSi hardfacings, Tribology International., 127, pp. 288-295, 2018. DOI: 10.1016/j.triboint.2018.06.022
  • Bowden, D., Stewart, D. and Preuss, M., Understanding the microstructural evolution of silicide-strengthened hardfacing steels, Materials and Design, 161, pp. 1-13, 2019. DOI: 10.1016/j.matdes.2018.09.015
  • Yüksel, N. and Şahin, S., Wear behavior-hardness-microstructure relation of Fe-Cr-C and Fe-Cr-C-B based hardfacing alloys, Materials and Design., 58, pp. 491-498, 2014. DOI: 10.1016/j.matdes.2014.02.032
  • Kirchgaßner, M., Badisch, E. and Franek, F., Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear, 265(5-6), pp. 772-779, 2008. DOI: 10.1016/j.wear.2008.01.004
  • Gualco, A., Svoboda, H.G. and Surian, E.S., Study of abrasive wear resistance of Fe-based nanostructured hardfacing, Wear, 2016. DOI: 10.1016/j.wear.2016.04.011
  • Gualco, A., Marini, C., Svoboda, H. and Surian, E., Wear resistance of Fe-based nanostructured hardfacing, Procedia Materials Science., 8, pp. 934-943, 2015. DOI: 10.1016/j.mspro.2015.04.154
  • Gou, J., Lu, P., Wang, Y., Liu, S. and Zou, Z., Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe-Cr-B hardfacing alloy, Applied Surface Science., 2016. DOI: 10.1016/j.apsusc.2015.11.076
  • Correa, E.O., Alcântara, N.G., Valeriano, L.C., Barbedo, N.D. and Chaves, R.R., The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process, Surface Coatings and Technology., 276, pp. 479-484, 2015. DOI: 10.1016/j.surfcoat.2015.06.026
  • Gualco, A., Svoboda, H.G., Surian, E.S. and de Vedia, L.A., Effect of welding procedure on wear behaviour of a modified martensitic tool steel hardfacing deposit, Materials Design., 31(9), pp. 4165-4173, 2010. DOI: 10.1016/j.matdes.2010.04.026
  • Welding, B.S.P., Qualify processes and operators according to {ASME} Boiler and Pressure Vessel Code: Section {IX}, Welding Brazing Qualifications., 1, pp. 0-2, 2012.
  • Dupont, J.N. and Marder, A.R., Thermal efficiency of arc welding processes, Weld. J., (December), pp. 406s-416s, 1995.
  • ASME. Boiler and pressure vessel code, section V: nondestructive examination. American Society of Mechanical Engineers, 2004.
  • Melvin-T., A., Reviewed Work: Applied statistics and probability for engineers by Douglas, C. and Montgomery, G.R. , Technometrics, 37(4), pp. 455-457, 1995. DOI: 10.2307/1269738.
  • Pradeep, G.R.C., Ramesh, A. and Prasad, B.D., Hardfacing of AISI 1020 steel by arc welding in comparison with TIG welding processes., Journal of Science Resources., 5(1), pp. 119-126, 2013. DOI: 10.3329/jsr.v5i1.11899
  • Lippold, J.C., Welding metallurgy and weldability. Wiley Blackwell, New Jersey, USA, 2014. DOI: 3390/met10010143
  • T. Materials, ASM - Welding brazing and soldering, Engineering, 6, 1993, 2873 P.
  • De Sairre-Balsamo, P.S., Scotti, A. and De Mello, J.D.B., Interpretation of hardfacing microstructure using Fe-Cr-C liquidus surface, Revista de Soldadura, 1995.
  • Kotecki, J.D. and Ogborn, J.S., Abrasion resistance of iron-based hardfacing alloys, Welding Journal., 74(8), pp. S269-S278, 1995.
  • Atamert, S. and Bhadeshia, H.K.D.H., Microstructure and stability of FeCrC hardfacing alloys, Materials Science and Engineering: A, 130(1). pp. 101-111, 1990.
  • Mendez, P.F. et al., Welding processes for wear resistant overlays, Journal of Manufacture and Processes., 16(1), pp. 4-25, 2014. DOI: 10.1016/j.jmapro.2013.06.011
  • Gou, J., Wang, Y., Sun, Z. and Li, X., Study of work function and dry sliding wear behavior of Fe-based hardfacing alloys with and without nano rare earth oxides, Journal of Alloys Compounds, 713C, pp. 255-265, 2017. DOI: 10.1016/j.jallcom.2017.04.172
  • Zum-Gahr, K.H., Microstructure and wear of materials, vol. 10. Elsevier, 1987.
  • Olaseinde, O.A., Van Der Merwe, J. and Cornish, L., Characterization and corrosion behaviour of selected duplex stainless steels in acidic and acidic-chloride solution, Advanced Chemical Enginnering Science., 4(January), pp. 89-93, 2014. DOI: 10.4236/aces.2014.41012
  • Quan, C. and He, Y., Properties of nanocrystalline Cr coatings prepared by cathode plasma electrolytic deposition from trivalent chromium electrolyte, Surface and Coatings Technology., 269(1), pp. 319-323, 2015. DOI: 10.1016/j.surfcoat.2015.02.001
  • Doǧan, Ö.N. and Hawk, J.A., Effect of carbide orientation on abrasion of high Cr white cast iron, Wear, 189(1-2), pp. 136-142, 1995. DOI: 10.1016/0043-1648(95)06682-9
  • Rai, D. and Pathak, J.P., Influence of sliding velocity on wear behaviour of different microstructures of Ni-Cr-Mo-V steel, Indian Journal Enginnering Materials Science., 11(2), pp. 113-120, 2004. DOI: 10.1016/0043-1648(95)06682-9