Modification of ASTM B107 AZ31 and polypropylene surfaces with TiO2 particles using the dip-coating method
- López Herrera, Johan Esteban 1
- Hernández Montes, Vanessa 1
- Betancur Henao, Claudia Patricia 1
- Santa Marín, Juan Felipe 1
- Buitrago Sierra, Robison 1
- 1 Instituto Tecnológico Metropolitano ITM. Medellín (Colombia)
ISSN: 0122-6517, 2382-4700
Datum der Publikation: 2018
Ausgabe: 14
Nummer: 2
Seiten: 45-54
Art: Artikel
Andere Publikationen in: INGE CUC
Zusammenfassung
Introduction: Magnesium alloys have been known for its biocompatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys. Objective: In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evaluate its corrosion resistance. Methodology: The particles were analyzed by Scanning Electron Microscopy (SEM) and visual inspection. Additionally, hydrogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys. Results: The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corrosion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thinner than 20 nm. Conclusions: TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropylene discs entirely.
Bibliographische Referenzen
- S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020
- J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106
- Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058
- M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130
- R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168
- S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022
- R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003
- M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011
- I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113
- X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018
- R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011
- M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002
- A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361
- M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109
- A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069
- M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004
- S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332
- Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917
- K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.
- P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.
- M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdf
- S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7
- T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.
- V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.
- X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056
- Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.
- N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4
- G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017
- N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014
- H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237
- E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830
- O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0
- C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-T
- G. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001
- S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803
- M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/9780857093677