ClimatecChange and Tourism in Spain. The Case of the Canary Islands and the Costa Blanca (Alicante): comparative analysis

  1. Dorta-Antequera, Pedro 1
  2. Sánchez-Almodóvar, Esther 2
  3. López-Díez, Abel 1
  4. Díaz-Pacheco, Jaime 1
  5. Olcina-Cantos, Jorge 2
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Liburua:
Advances in Spatial Science . Tourism and Climate Change in the 21st Century Challenges and Solutions
  1. Paula Remoaldo (ed. lit.)
  2. Vítor Ribeiro (ed. lit.)
  3. Hélder Lopes (ed. lit.)
  4. Juliana Alves (ed. lit.)

ISSN: 1430-9602 2197-9375

ISBN: 978-3-031-59430-4 978-3-031-59431-1

Argitalpen urtea: 2024

Orrialdeak: 143-173

Mota: Liburuko kapitulua

DOI: 10.1007/978-3-031-59431-1_7 GOOGLE SCHOLAR lock_openSarbide irekia editor

Laburpena

Tourism and climate change are closely related elements of geographicalspace. Tourism is one of the causal agents of climate change, as it generates transformations in land use and favors CO2 emissions, especially due to the importanceof external and internal travel in the destinations. For its part, the current processof climate change is causing alterations in climatic elements that are a key aspectin determining the influx in destinations and the establishment of tourist seasons.The paper analyses the importance of tourism activity, with a scalar approach, in theSpanish territory, with special attention to two main tourist destinations: the CanaryIslands and the Costa Blanca (Alicante). It assesses the impact that both have as CO2emitters and the magnitude of the land transformation that they have caused in recentdecades. On the other hand, the effect that climate change is already having on thealteration of important climatic elements for the sun and beach tourism activity inboth destinations is studied through the use of comfort indicators. The actions formitigating and adapting to climate change that public administrations and private agents are implementing to reduce its impact are studied. The future trends of theclimate change process in the tourism activity of these two main destinations in Spainare assessed.

Erreferentzia bibliografikoak

  • AEMET. (2020). Borrasca Gloria. Borrascas Con Gran Impacto. https://www.aemet.es/es/conocermas/borrascas/2019-2020/estudios_e_impactos/gloria
  • AEMET. (2022). Informe sobre el estado del clima de España 2021 [Report on the state of Spain’s climate 2021]. https://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/informe_estado_clima
  • AENA. (2019). Informe anual 2019 [2019 Annual Report]. https://www.aena.es/es/estadisticas/informes-anuales.html
  • AENA. (2023). Estadísticas de tráfico aéreo [Air traffic statistics]. https://www.aena.es/es/estadisticas/consultas-personalizadas.html
  • Alonso-Pérez, S., López-Solano, J., Rodríguez-Mayor, L., & Márquez-Martinón, J. M. (2021). Evaluation of the tourism climate index in the Canary Islands. Sustainability, 13(13), 7042. https://doi.org/10.3390/su13137042
  • Ayuntamiento de Arona. (1984). Plan General de Ordenación Urbana de Arona, PGOU. https://www.arona.org/Portals/0/documentos/0_14784_1.pdf
  • Ayuntamiento de Benidorm. (2021). Plan de Adaptación ante el cambio climático de Benidorm [Benidorm’s climate change adaptation plan]. Ayuntamiento de Benidorm.
  • Ayuntamiento de Benidorm. (2023). Visit Benidorm. https://www.visitbenidorm.es/ver/3869/sostenibilidad-benidorm.html
  • Baatsen, M., Haarsma, R. J., Van Delden, A. J., & de Vries, H. (2015). Severe autumn storms in future Western Europe with a warmer Atlantic Ocean. Climate Dynamics, 45(3), 949–964. https://doi.org/10.1007/s00382-014-2329-8
  • Becken, S., & Carmignani, F. (2020). Are the current expectations for growing air travel demand realistic? Annals of Tourism Research, 80, 102840. https://doi.org/10.1016/j.annals.2019.102840
  • Brown, D. P. (2021). Subtropical Storm Alpha (AL242020) 17–19 September 2020. https://www.nhc.noaa.gov/data/tcr/AL242020_Alpha.pdf
  • Bujosa Bestard, Á., & Rosselló Nadal, J. (2011). Cambio climático y estacionalidad turística en España: Un análisis del turismo doméstico de costa [Climate change and touristic seasonality in Spain: An analysis of domestic coastal tourism]. Estudios de Economía Aplicada, 29(3), 863–880. https://www.redalyc.org/articulo.oa?id=30122405011
  • Butler, R. (2004). The Tourism Area Life Cycle in the Twenty‐First Century. En A. A. Lew, C. M. Hall, & A. M. Williams (Eds.), A companion to tourism (pp. 159–170). BlackwellPublishing Ltd. https://doi.org/10.1002/9780470752272.ch13
  • Cabildo de Arona. (1984). Plan General de Ordenación Urbana de Arona [General urban planning plan of Arona]. https://www.arona.org/Portals/0/documentos/0_14784_1.pdf
  • Cabildo de Tenerife. (2023). Tenerife. Turismo sostenible [Tenerife. Sustainable tourism]. https://www.webtenerife.com/turismosostenible/
  • Cabildo de Tenerife. (1994). Plan Insular de Ordenación del Territorio de Tenerife, PIOT.
  • CEAM. (2022). Informe TSM Mediterráneo. Verano 2022. 15, 2–7. http://www.ceam.es/ceamet/SST/REPORTS/CEAM_Mediterranean_SST_report_Issue15_Summer2022-cast.pdf
  • COP26. (2022). The Glasgow declaration: A commitment to a decade of tourism climate action. https://www.oneplanetnetwork.org/sites/default/files/2021-11/GlasgowDeclaration_EN_0.pdf
  • Cubas, J., Martín-Esquivel, J. L., Marrero-Gómez, M., Díaz, J. R. D., Rodríguez, F., & González-Mancebo, J. M. (2022). Climate change causes rapid collapse of a keystone shrub from insular Alpine ecosystems. Journal for Nature Conservation, 69(126263). https://doi.org/10.1016/J.JNC.2022.126263
  • De Luis, M., Brunetti, M., Gonzalez-Hidalgo, J. C., Longares, L. A., & Martin-Vide, J. (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary Change, 74(1), 27–33. https://doi.org/10.1016/j.gloplacha.2010.06.006
  • Díaz-Pacheco, J., Yanes, A., López-Díez, A., Máyer, P., & Dorta, P. (2019). Relación entre episodios de lluvia intensa y daños producidos por inundaciones en áreas turísticas costeras de clima árido: el Sur de Tenerife (1980–2018) [Relationship between intense rainfall episodes and flood damage in coastal touristic areas with arid climate: Southern Tenerife (1980–2018)]. In X Jornadas de Geomorfología Litoral. Libro de ponencias.
  • Dorta Antequera, P., Díaz Pacheco, J., López Díez, A., & Bethencourt Herrera, C. (2021). Tourism, transport and climate change: The carbon footprint of international air traffic on islands. Sustainability, 13(4), 1795. https://doi.org/10.3390/SU13041795
  • Dorta Antequera, P., Domínguez Hernández, A., Díaz Pacheco, J., López Díez, A., & Martín Raya, N. (2023). Perturbaciones tropicales en el Atlántico norte suroriental. Estado de la cuestión y perspectivas de futuro [Tropical disturbances in the Southeastern North Atlantic. State of the Art and Future Perspectives.]. Investigaciones Geográficas (79), 33–50. https://doi.org/10.14198/INGEO.22559
  • Dorta Antequera, P., López Díez, A., & Díaz Pacheco, J. S. (2018). El calentamiento global en el Atlántico Norte Suroriental. El caso de Canarias. Estado de la cuestión y perspectivas de futuro [Global warming in the Southeastern North Atlantic. The case of the Canary Islands. State of the art and future perspectives]. Cuadernos Geográficos, 57(2), 27–52. https://doi.org/10.30827/cuadgeo.v57i2.5934
  • EEA. (2023). EEA greenhouse gases. https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer
  • European Commission. (2020). Reducing emissions from aviation. https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_es
  • Exceltur. (2023). PIB Turístico Español [Spanish tourism GDB]. https://www.exceltur.org/pib-turistico-espanol/
  • Ferrer Valero, N., Hernández-Calvento, L., & Hernández Cordero, A. (2017). Evolución costera y diversidad geomórfica en archipiélagos de punto caliente: el caso de las islas Canarias [Coastal evolution and geomorphic diversity in hotspot archipelagos: The case of the Canary Islands]. Geotemas (Madrid), 17, 199–202. https://dialnet.unirioja.es/servlet/extart?codigo=6398561
  • Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6), 1–6. https://doi.org/10.1029/2012GL051000
  • García-Hernández, J. S., Díaz-Rodríguez, M. del C., & García-Herrera, L. M. (2018). Auge y crisis inmobiliaria en Canarias: desposesión de vivienda y resurgimiento inmobiliario [Boom and real estate crisis in the Canary Islands: Housing dispossession and real estate resurgence]. Investigaciones Geográficas, 69, 23–39. https://doi.org/10.14198/INGEO2018.69.02
  • General Direction of the Cadastre. (GDC). Sede Electrónica del Catastro [Electronic headquarters of the Cadastre]. https://www.sedecatastro.gob.es/OVCInicio.aspx
  • Generalitat Valenciana. (2022). Inventario de emisiones. Una herramienta en la lucha contra el cambio climático [Emissions inventory: A tool in the fight against climate change]. https://agroambient.gva.es/documents/163279113/356229181/Documento+sintesi+Inventario+Municipios+CAS.pdf/60062fa5-ab45-7092-86e6-2a887125e34d?t=1648477341069
  • Heredia Yzquierdo, F. J. (2015). El mercado de derechos de emisión de CO2 y otros gases de efecto invernadero: el sector de la navegación aérea y su impacto en el turismo [The market for CO2 and other greenhouse gas emission rights: The air navigation sector and its impact on tourism]. Derecho y Cambio Social, 12(40). https://dialnet.unirioja.es/descarga/articulo/5460324.pdf
  • Hernández-Hernández, M. (2013). Análisis de los procesos de transformación territorial en la provincia de Alicante (1985–2011) y su incidencia en el recurso hídrico a través del estudio bibliográfico [Analysis of territorial transformation processes in the Province of Alicante (1985–2011) and their impact on water resources through bibliographic study]. Documents d’Anàlisi Geogràfica, 59(1), 105–136. https://rua.ua.es/dspace/handle/10045/33111#.XlK2hXdOKCc.mendeley
  • ICAO (2021). Carbon emissions calculator. https://applications.icao.int/icec/Home/Index
  • INE. (2022). Estadística de movimientos turísticos en frontera. Frontur [Statistics of tourist movements at borders. Frontur]. https://ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176996&menu=ultiDatos&idp=1254735576863
  • Invattur. (2020). Manual para la adaptación de los destinos turísticos al cambio climático [Manual for the adaptation of tourist destinations to climate change]. https://invattur.es/uploads/entorno_37/ficheros/626913f3572001394984318.pdf
  • IPCC (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.). Cambridge University Press. https://www.ipcc.ch/report/ar5/wg2/
  • IPCC. (2019). Summary for policymakers. En H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer (Eds.), IPCC special report on the ocean and cryosphere in a changing climate (pp. 3–35). Cambridge University Press. https://doi.org/10.1017/9781009157964.001
  • ISTAC. (2020). Estadística de Movimientos Turísticos en Fronteras de Canarias [Statistics of tourist movements at borders of the Canary Islands]. http://www.gobiernodecanarias.org/istac/temas_estadisticos/sectorservicios/hosteleriayturismo/demanda/E16028B.html
  • Jiménez, J. A., Valdemoro, H. I., Bosom, E., Agustín Sánchez-Arcilla, Robert, & Nicholls, J. (2017). Impacts of sea-level rise-induced erosion on the Catalan coast. Regional Environmental Change, 17(2), 593–603. https://doi.org/10.1007/s10113-016-1052-x
  • Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences, 117(22), 11975–11980. https://doi.org/10.1073/pnas.1920849117
  • Kulp, S. A., & Strauss, B. H. (2019). New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12808-z
  • Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., Gettelman, A., De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., … Wilcox, L. J. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. https://doi.org/10.1016/j.atmosenv.2020.117834
  • Lenzen, M., Sun, Y. Y., Faturay, F., Ting, Y. P., Geschke, A., & Malik, A. (2018). The carbon footprint of global tourism. Nature Climate Change, 8(6), 522–528. https://doi.org/10.1038/s41558-018-0141-x
  • López Díez, A., Máyer Suárez, P., Díaz Pacheco, J., & Dorta Antequera, P. (2019). Rainfall and flooding in coastal tourist areas of the Canary Islands (Spain). Atmosphere, 10(12), 809. https://doi.org/10.3390/atmos10120809
  • Losada, I., Izaguirre, C., & Díaz, P. (2014). Cambio climático en la costa española. Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). http://publicacionesoficiales.boe.es/
  • Luque, A., Martín, J., Dorta, P., & Mayer, P. (2014). Temperature trends on Gran Canaria (Canary Islands). An example of global warming over the subtropical Northeastern Atlantic. Atmospheric and Climate Sciences, 4(1), 20–28. https://doi.org/10.4236/acs.2014.41003
  • Marcos, M., Puyol, B., Calafat, F. M., & Woppelmann, G. (2013). Sea level changes at Tenerife Island (NE Tropical Atlantic) since 1927. Journal of Geophysical Research: Oceans, 118(10), 4899–4910. https://doi.org/10.1002/jgrc.20377
  • Martín-Arias, J., Martínez-Santos, P., & Andreo, B. (2020). Modelling the effects of climate change and population growth in four intensively exploited Mediterranean aquifers. The Mijas range, southern Spain. Journal of Environmental Management, 262(110316). https://doi.org/10.1016/J.JENVMAN.2020.110316
  • Martin, J. E. (2015). Contraction of the Northern Hemisphere, Lower-Tropospheric, Wintertime Cold Pool over the Past 66 Years. Journal of Climate, 28(9), 3764–3778. https://doi.org/10.1175/JCLI-D-14-00496.1
  • Martín, J. L., Bethencourt, J., & Cuevas-Agulló, E. (2012). Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic Change, 114(2), 343–355. https://doi.org/10.1007/s10584-012-0407-7
  • Martín León, F. (2019). Los inviernos serán más cálidos, pero también con irrupciones más frías [Winters will be warmer, but also with colder spells]. Revista de Aficionados a La Meteorología. https://www.tiempo.com/ram/507091/los-inviernos-seran-mas-calidos-pero-tambien-con-irrupciones-mas-frias/
  • Martínez-Medina, A., & Oliva-Meyer, J. (2015). Vértigo de altura: elogio de un rascacielos. La torre Coblanca-1, Juan Guardiola Gaya, Benidorm, 1963–1965 [Vertigo at Heights: Eulogy of a Skyscraper. Coblanca-1 Tower, Juan Guardiola Gaya, Benidorm, 1963–1965]. Fundación Alejandro de la Sota and Ministerio de Fomento (España) http://rua.ua.es/dspace/handle/10045/53121
  • Mayer, P., Marzol, M. V., & Parreño, J. M. (2017). Precipitation trends and a daily precipitation concentration index for the mid-Eastern Atlantic (Canary Islands, Spain). Cuadernos de Investigación Geográfica, 43(1), 255–268. https://doi.org/10.18172/cig.3095
  • Mazón Martínez, T. (2016). Orígenes y desarrollo turístico en Alicante: del veraneo al turismo de masas [Origins and touristic development in Alicante: From summer vacationing to mass tourism]. Canelobre, 66, 38–51. http://hdl.handle.net/10045/57366
  • Miró, J. J., Estrela, M. J., Caselles, V., & Gómez, I. (2018). Spatial and temporal rainfall changes in the Júcar and Segura basins (1955–2016): Fine-scale trends. International Journal of Climatology, 38(13), 4699–4722. https://doi.org/10.1002/joc.5689
  • Miró Pérez, J. J. (2014). Downscaling estadístico de series climáticas mediantes redes neuronales: reconstrucción en alta resolución de la temperatura diaria para la Comunidad Valenciana. Interpolación espacial y análisis de tendencias (1948–2011) [Universidad de Alicante]. http://hdl.handle.net/10045/36538
  • Miró Pérez, J. J., & Olcina Cantos, J. (2020). Cambio climático y confort térmico. Efectos en el turismo de la Comunidad Valenciana [Climate Change and Thermal Comfort: Effects on Tourism in the Valencian Community]. Investigaciones Turísticas, 20, 1–30. https://doi.org/10.14198/INTURI2020.20.01
  • Morote, Á. F., & Hernández, M. (2016). Población extranjera y turismo residencial en el litoral de Alicante (1960–2011): Repercusiones territoriales. Eure, 42(126), 55–76. https://doi.org/10.4067/S0250-71612016000200003
  • Muñoz, C., Schultz, D., & Vaughan, G. (2020). A midlatitude climatology and interannual variability of 200- And 500-hPa cut-off lows. Journal of Climate, 33(6), 2201–2222. https://doi.org/10.1175/JCLI-D-19-0497.1
  • Olcina Cantos, J. (2021). Calentamiento climático actual [Current Climate Warming]. Un problema global. In J. Romero & J. Olcina (Eds.), Cambio climático en el mediterráneo. Procesos, riesgos y políticas (pp. 19–42). Tirant Humanidades.
  • Olcina Cantos, J., Serrano-Notivoli, R., Miró, J., & Meseguer-Ruiz, O. (2019). Tropical nights in the Spanish Mediterranean coast: Recent evolution (1950–2014). Climate Research, 78(3), 225–236. https://doi.org/10.3354/cr01569
  • Olcina, J. (2020). Clima, cambio climático y riesgos climáticos en el litoral mediterráneo. Oportunidades para la geografía [Climate, climate change, and climatic risks in the Mediterranean Coast. Opportunities for geography]. Documents d’Anàlisi Geogràfica, 66(1), 159–182. https://doi.org/10.5565/rev/dag.629
  • Pastor, F., Valiente, J. A., & Palau, J. L. (2018). Sea surface temperature in the Mediterranean: Trends and spatial patterns (1982–2016). Pure and Applied Geophysics, 175(11), 4017–4029. https://doi.org/10.1007/S00024-017-1739-Z/FIGURES/7
  • Pena-Ortiz, C., Gallego, D., Ribera, P., Ordonez, P., & Del Carmen Alvarez-Castro, M. (2013). Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research Atmospheres, 118(7), 2702–2713. https://doi.org/10.1002/JGRD.50305
  • Pérez-Chacón, E., Hernádez-Calvento, L., & Yanes, A. (2007). Transformaciones humanas y sus consecuencias sobre los litorales de las Islas Canarias [Human transformations and their consequences on the coastlines of the Canary Islands]. In S. Etienne & R. Paris (Eds.), Les littoraux volcaniques. Une aproche environnementale (pp. 173–191). Press Universitaires Blaise-Pascal.
  • Pérez, B., Payo, A., López, D., Woodworth, P. L., & Alvarez Fanjul, E. (2014). Overlapping sea level time series measured using different technologies: An example from the REDMAR Spanish network. Natural Hazards and Earth Systems Sciences, 14(3), 589–610. https://doi.org/10.5194/nhess-14-589-2014
  • Pérez Morales, A., Gil Guirado, S., & Olcina Cantos, J. (2015). Housing bubbles and the increase of flood exposure. Failures in flood risk management on the Spanish south-eastern coast (1975–2013). Journal of Flood Risk Management, 11, 1–12. https://doi.org/10.1111/jfr3.12207
  • Ribas Palom, A. M., Olcina Cantos, J., & Sauri Pujol, D. (2020). More exposed but also more vulnerable? Climate change, high intensity precipitation events and flooding in Mediterranean Spain. Disaster Prevention and Management: An International Journal, 29(3), 229–248. https://doi.org/10.1108/DPM-05-2019-0149
  • Rico-Amoros, A. M., Sauri, D., Olcina-Cantos, J., & Vera-Rebollo, J. F. (2013). Beyond megaprojects? Water alternatives for mass tourism in coastal Mediterranean Spain. Water Resources Management, 27(2), 553–565. https://doi.org/10.1007/S11269-012-0201-3/TABLES/1
  • Simancas Cruz, M. (2019). Especulación urbanística y burbuja inmobiliaria en espacios litorales: Factores explicativos del tercer boom turístico de Canarias [Real estate speculation and property bubble in coastal areas: Explanatory factors of the third tourism boom in the Canary Islands]. Cuadernos De Turismo, 43, 471–497. https://doi.org/10.6018/turismo.43.18
  • Simancas Cruz, M. R., García Cruz, J. I., Dorta Rodríguez, A., & Falero González, R. A. (2011). El impacto territorial de la moratoria turística de Canarias. Geografía y desafíos territoriales en el siglo XXI (Vol. 2, pp. 715–726). Asociación de Geógrafos Españoles. https://dialnet.unirioja.es/servlet/articulo?codigo=3806043&orden=1&info=link
  • Steiger, R., Demiroglu, O. C., Pons, M., & Salim, E. (2023). Climate and carbon risk of tourism in Europe. Journal of Sustainable Tourism, 31. https://doi.org/10.1080/09669582.2022.2163653
  • Strauss, B. H., Kulp, S., & Levermann, A. (2015). Carbon choices determine US cities committed to futures below sea level. Proceedings of the National Academy of Sciences, 112(44), 13508–13513. https://doi.org/10.1073/pnas.1511186112
  • Tarife Méndez, R., Hernández Barrera, S., Gamiz Fortis, S. R., Castro Díez, A. Y., & Esteban-Parra, M. J. (2012). Análisis de los extremos pluviométricos en las Islas Canarias y su relación con el índice NAO [Analysis of rainfall extremes in the Canary Islands and their relationship with the NAO index]. In C. Rodríguez Puebla, A. Ceballos Barbancho, N. González Reviriego, E. Morán Tejeda, M. A. Hernández Encinas (coord.), Cambio climático. Extremos e impactos: [ponencias presentadas al VIII Congreso Internacional de la Asociación Española de Climatología] (pp. 659–668). https://dialnet.unirioja.es/servlet/articulo?codigo=7336445&orden=0&info=link
  • Torres-Bagur, M., Ribas, A., & Vila-Subirós, J. (2020). Understanding the key factors that influence efficient water-saving practices among tourists: A Mediterranean case study. Water, 12(8), 2083. https://doi.org/10.3390/w12082083
  • UNWTO. (2022). 145 Key Tourism Statistics. https://www.unwto.org/tourism-statistics/key-tourism-statistics
  • Vaquero, J. M., García-Herrera, R., Wheeler, D., Chenoweth, M., & Mock, C. J. (2008). A historical analog of 2005 Hurricana Vince. American Meteorological Society, 89(2), 191–202. https://doi.org/10.1175/BAMS-89-2-191
  • Vecchi, G. A., Landsea, C., Zhang, W., Villarini, G., & Knutson, T. (2021). Changes in Atlantic major hurricane frequency since the late-19th century. Nature Communications, 12(1), 4054. https://doi.org/10.1038/s41467-021-24268-5
  • Ventura Cisternas, C. (2021). Edificio Intempo, en Benidorm (Alicante). Una atalaya Ssobre el Mediterráneo [A watchtower over the Mediterranean]. CERCHA, 150, 20–33. http://hdl.handle.net/20.500.12251/2280
  • Williams, G. P. (2006). Circulation sensitivity to Tropopause height. Journal of the Atmospheric Sciences, 63(7), 1954–1961. https://doi.org/10.1175/JAS3762.1
  • WTTC. (2022). Economic Impact 2022: Global trends. https://wttc.org/Portals/0/Documents/Reports/2022/EIR2022-Global%20Trends.pdf
  • Yanes Luque, A., Rodríguez-Báez, J. A., Máyer Suárez, P., Dorta Antequera, P., López-Díez, A., Díaz-Pacheco, J., & Pérez-Chacón, E. (2021). Marine storms in coastal tourist areas of the Canary Islands. Natural Hazards, 109(1), 1297–1325. https://doi.org/10.1007/s11069-021-04879-3