Visible light-promoted metal-free aerobic photooxidation of xanthenes, thioxanthenes and dihydroacridines in deep eutectic solvents

  1. Burlingham, Sarah-Jayne
  2. Torregrosa-Chinillach, Alejandro
  3. Alonso, Diego A. 1
  4. Chinchilla, Rafael 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Tetrahedron Green Chem

ISSN: 2773-2231

Any de publicació: 2023

Volum: 2

Pàgines: 100030

Tipus: Article

DOI: 10.1016/J.TGCHEM.2023.100030 GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Tetrahedron Green Chem

Resum

Benzylic systems such as 9H-xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones or acridones, respectively, in deep eutectic solvents by a visible blue light-promoted photooxidation procedure carried out using ambient air as oxidant in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or almost quantitative, and the reaction media can be recovered and reused. The environmental friendliness of the protocol is demonstrated based on several green metrics.

Referències bibliogràfiques

  • Liu, (2017), Natl. Sci. Rev., 4, pp. 359, 10.1093/nsr/nwx039
  • Stephenson, (2018)
  • Narayanam, (2011), Chem. Soc. Rev., 40, pp. 102, 10.1039/B913880N
  • Tucker, (2012), J. Org. Chem., 77, pp. 1617, 10.1021/jo202538x
  • Xuan, (2012), Angew. Chem. Int. Ed., 51, pp. 6828, 10.1002/anie.201200223
  • Gambarotti, (2013), Curr. Org. Chem., 17, pp. 2406, 10.2174/13852728113179990054
  • Prier, (2013), Chem. Rev., 113, pp. 5322, 10.1021/cr300503r
  • Nicewicz, (2014), ACS Catal., 4, pp. 355, 10.1021/cs400956a
  • Angnes, (2015), Org. Biomol. Chem., 13, pp. 9152, 10.1039/C5OB01349F
  • Shaw, (2016), J. Org. Chem., 81, pp. 6898, 10.1021/acs.joc.6b01449
  • Crisenza, (2020), Nat. Commun., 11, pp. 803, 10.1038/s41467-019-13887-8
  • Mateus-Ruiz, (2020), Synthesis, 52, pp. 3111, 10.1055/s-0040-1707225
  • Fukuzumi, (2014), Org. Biomol. Chem., 12, pp. 6059, 10.1039/C4OB00843J
  • Ravelli, (2012), ChemCatChem, 4, pp. 169, 10.1002/cctc.201100363
  • Uygur, (2019), Org. Biomol. Chem., 17, pp. 5475, 10.1039/C9OB00834A
  • Revathi, (2018), Adv. Synth. Catal., 360, pp. 4652, 10.1002/adsc.201800736
  • Zhang, (2019), ChemSusChem, 12, pp. 2898, 10.1002/cssc.201900414
  • Zhang, (2018), Green Chem., 20, pp. 4790, 10.1039/C8GC02382D
  • Torregrosa-Chinillach, (2022), Molecules, 27, pp. 497, 10.3390/molecules27020497
  • Resende, (2020), Org. Chem. Front., 7, pp. 3027, 10.1039/D0QO00659A
  • Ramakrishnan, (2020), Chem. Pap., 75, pp. 455, 10.1007/s11696-020-01320-0
  • Klein-Júnior, (2020), Chem. Biodivers., 17, 10.1002/cbdv.201900499
  • Feng, (2020), Molecules, 25, pp. 598, 10.3390/molecules25030598
  • Ng, (2019), Phcog. Rev., 13, pp. 28, 10.4103/phrev.phrev_25_18
  • Bedi, (2018), Asian J. Pharmaceut. Clin. Res., 11, pp. 12, 10.22159/ajpcr.2018.v11i2.22426
  • Paiva, (2013), Curr. Med. Chem., 20, pp. 2438, 10.2174/0929867311320190004
  • Alwan, (2015), Med. Chem., 15, pp. 1012
  • Sepúlveda, (2013), Curr. Med. Chem., 20, pp. 2402, 10.2174/0929867311320190002
  • Cholewiński, (2011), Pharmacol. Rep., 63, pp. 305, 10.1016/S1734-1140(11)70499-6
  • Vanover, (2010), Org. Lett., 12, pp. 2246, 10.1021/ol1005938
  • Mühldorf, (2016), Angew. Chem. Int. Ed., 55, pp. 427, 10.1002/anie.201507170
  • Liu, (2017), Asian J. Org. Chem., 6, pp. 422, 10.1002/ajoc.201600426
  • Li, (2018), Org. Chem. Front., 5, pp. 380, 10.1039/C7QO00798A
  • Finney, (2018), Green Chem., 20, pp. 2242, 10.1039/C7GC03741D
  • Sarma, (2019), Green Chem., 21, pp. 6717, 10.1039/C9GC02658D
  • Geng, (2019), Green Chem., 21, pp. 6116, 10.1039/C9GC02870F
  • Pan, (2019), Synlett, 30, pp. 218, 10.1055/s-0037-1610678
  • Xiang, (2017), Org. Lett., 19, pp. 3009, 10.1021/acs.orglett.7b01270
  • Tolba, (2020), Eur. J. Org. Chem., pp. 1579, 10.1002/ejoc.201901628
  • Jung, (2013), Inorg. Chem., 52, pp. 13594, 10.1021/ic402121j
  • Pandey, (2014), Adv. Synth. Catal., 356, pp. 2813, 10.1002/adsc.201400107
  • Clark, (2017)
  • Clarke, (2018), Chem. Rev., 118, pp. 747, 10.1021/acs.chemrev.7b00571
  • García-Alvarez, (2015), Eur. J. Inorg. Chem., pp. 5147, 10.1002/ejic.201500892
  • Liu, (2015), RSC Adv., 5, pp. 48675, 10.1039/C5RA05746A
  • Alonso, (2016), Eur. J. Org. Chem., pp. 612, 10.1002/ejoc.201501197
  • Guajardo, (2016), ChemCatChem, 8, pp. 1020, 10.1002/cctc.201501133
  • Liu, (2018), J. Nat. Prod., 81, pp. 679, 10.1021/acs.jnatprod.7b00945
  • Marcus, (2019)
  • Liu, (2022), J. Mol. Liq., 362
  • Thakur, (2022), Curr. Org. Chem., 26, pp. 299, 10.2174/1385272826666220126165925
  • Yu, (2022), Cell Rep. Phys. Sci., 3
  • Hooshmand, (2023), J. Mol. Liq., 371, 10.1016/j.molliq.2022.121013
  • Prabhune, (2023), J. Mol. Liq., 379, 10.1016/j.molliq.2023.121676
  • Ramón, (2019)
  • Procopio, (2023), Adv. Synth. Catal., 365, pp. 1, 10.1002/adsc.202201082
  • CGA. https://www.cganet.com/cga-m-24-publication-guides-mitigation-of-oxygen-hazards-in-healthcare-environments/.
  • EIGA. https://www.eiga.eu/uploads/documents/DOC004.pdf.
  • Torregrosa-Chinillach, (2021), Molecules, 26, pp. 974, 10.3390/molecules26040974
  • Deng, (2019), Food Chem., 274, pp. 891, 10.1016/j.foodchem.2018.09.048
  • van Aken, (2006), Beilstein J. Org. Chem., 2, pp. 3, 10.1186/1860-5397-2-3
  • Andraos, (2019)