Razonamientos de estudiantes en tareas de comparación, ordenación y representación de fracciones y números decimales

  1. González-Forte, Juan Manuel 1
  2. Fernández, Ceneida 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
PNA: Revista de investigación en didáctica de la matemática

ISSN: 1887-3987

Año de publicación: 2024

Título del ejemplar: (January, 2024)

Volumen: 18

Número: 2

Páginas: 131-160

Tipo: Artículo

DOI: 10.30827/PNA.V18I2.27218 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: PNA: Revista de investigación en didáctica de la matemática

Resumen

Se ha llevado a cabo un estudio transversal desde 5º de Educación Primaria hasta 4º de Educación Secundaria (ESO), en el que se analiza los niveles de éxito y razonamientos de los estudiantes en tareas de comparación de fracciones, comparación y ordenación de números decimales, y de representación en la recta numérica de fracciones y números decimales. Nuestro estudio aporta evidencias del uso de diferentes razonamientos incorrectos inferidos en estudios cuantitativos y, además, aporta información sobre su evolución. Los resultados muestran que, aunque disminuyó el razonamiento centrado en el uso del conocimiento del número natural, aparecen otros razonamientos incorrectos en este tipo de actividades.

Referencias bibliográficas

  • Barraza, P., Avaria, R. y Leiva, I. (2017). The role of attentional networks in the access to the numerical magnitude of fractions in adults/El rol de las redes atencionales en el acceso a la magnitud numérica de fracciones en adultos. Estudios de Psicología, 38(2), 495-522. https://doi.org/10.1080/02109395.2017.1295575
  • Behr, M. J., Lesh, R., Post, T. y Silver E. (1983). Rational number concepts. En R. Lesh y M. Landau (Eds.), Acquisition of mathematics concepts and processes, (pp. 91-125). Academic Press.
  • Behr, M., Wachsmuth, I., Post T. y Lesh R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341. https://doi.org/10.2307/748423
  • Braithwaite, D. W. y Siegler, R. S. (2018). Developmental changes in the whole number bias. Developmental Science, 21(2). https://doi.org/10.1111/desc.12541
  • Carpenter, T. P., Fennema, E. y Romberg, T. A. (Eds.) (1993). Studies in mathematical thinking and learning. Rational numbers: An integration of research. Erlbaum.
  • Clarke, D. M. y Roche, A. (2009). Students’ fraction comparison strategies as a window into robust understanding and possible pointers for instruction. Educational Studies in Mathematics, 72(1), 127-138. https://doi.org/10.1007/s10649-009-9198-9
  • Cramer, K., Post, T. y delMas, R. (2002). Initial fraction learning by fourth-and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111-144. https://doi.org/10.2307/749646
  • DeWolf, M. y Vosniadou, S. (2011). The whole number bias in fraction magnitude comparisons with adults. En L. Carlson, C. Hoelscher y T. F. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 1751-1756). Cognitive Science Society.
  • DeWolf, M. y Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39-49. https://doi.org/10.1016/j.learninstruc.2014.07.002
  • Durkin, K. y Rittle-Johnson, B. (2015). Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction, 37, 21-29. https://doi.org/10.1016/j.learninstruc.2014.08.003
  • Fazio, L. K., DeWolf, M. y Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(1), 1-16. https://doi.org/10.1037/xlm0000153
  • Fischbein, E., Deri, M., Nello, M. S. y Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3-17. https://doi.org/10.2307/748969
  • Gómez, D. M. y Dartnell, P. (2015). Is there a natural number bias when comparing fractions without common components? A meta-analysis. En K. Beswick, T. Muir y J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 1-8). PME.
  • Gómez, D. M. y Dartnell, P. (2019). Middle schoolers’ biases and strategies in a fraction comparison task. International Journal of Science and Mathematics Education, 17(6), 1233-1250. https://doi.org/10.1007/s10763-018-9913-z
  • Gómez, D. M., Silva, E. y Dartnell, P. (2017). Mind the gap: congruency and gap effects in engineering students’ fraction comparison. En B. Kaur, W. K. Ho, T. L. Toh y B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 353-360). PME.
  • González-Forte, J. M., Fernández, C. y Llinares, S. (2019). El fenómeno natural number bias: un estudio sobre los razonamientos de los estudiantes en la multiplicación de números racionales. Quadrante, 28(2), 32-52.
  • González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2020). Various ways to determine rational number size: an exploration across primary and secondary education. European Journal of Psychology of Education, 35(3), 549-565. https://doi:10.1007/s10212-019-00440-w
  • González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2022). Profiles in understanding the density of rational numbers among primary and secondary school students. AIEM Avances de investigación en educación matemática, 22, 47-70. https://doi.org/10.35763/aiem22.4034
  • González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2023). Incorrect ways of thinking about the size of fractions. International Journal of Science and Mathematics Education, 21, 2005-2025. https://doi.org/10.1007/s10763-022-10338-7
  • Hiebert, J. y Wearne, D. (1986). Procedures over concepts: The acquisition of decimal number knowledge. En J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 199-223). Lawrence Erlbaum Associates, Inc.
  • Khoury, H. A. y Zazkis, R. (1994). On fractions and non-standard representations: Preservice teachers’ concepts. Educational Studies in Mathematics, 27(2), 191–204. https://doi.org/10.1007/BF01278921
  • Kieren, T. E. (1992). Rational and fractional numbers as mathematical and personal knowledge: Implications for curriculum and instruction. En G. Leinhardt, R. Putnam y R. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 323–372). Lawrence Erlbaum.
  • McMullen, J. y Van Hoof, J. (2020). The role of rational number density knowledge in mathematical development. Learning and Instruction, 65. https://doi.org/10.1016/j.learninstruc.2019.101228
  • Merenluoto, K. y Lehtinen, E. (2002). Conceptual change in mathematics: Understanding the real numbers. En M. Limon y L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233-258). Kluwer Academic Publishers.
  • Mitchell, A. y Horne, M. (2010). Gap thinking in fraction pair comparisons is not whole number thinking: Is this what early equivalence thinking sounds like? En L. Sparrow, B. Kissane y C. Hurst (Eds.), Shaping the future of mathematics education (Vol. 2, pp. 414–421). MERGA.
  • Moss, J. (2005). Pipes, tubs, and beakers: New approaches to teaching the rationalnumber system. En Donovan, M. S. y Bransford, J. D. (Eds.), How students learn: History, Math, and Science in the classroom (pp. 309-349). National Academies Press.
  • Ni, Y. y Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
  • Nunes, T. y Bryant, P. (2008). Rational numbers and intensive quantities: challenges and insights to pupils’ implicit knowledge. Anales de Psicología/Annals of Psychology, 24(2), 262-270.
  • Obersteiner, A., Alibali, M. W. y Marupudi, V. (2020). Complex fraction comparisons and the natural number bias: the role of benchmarks. Learning and Instruction, 67. https://doi.org/10.1016/j.learninstruc.2020.101307
  • Pearn, C. y Stephens, M. (2004). Why you have to probe to discover what year 8 students really think about fractions. En I. Putt, R. Faragher y M. McLean (Eds.), Mathematics education for the third millenium: Towards 2010 (Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 430–437). MERGA.
  • Resnick, I., Rinne, L., Barbieri, C. y Jordan, N. C. (2019). Children’s reasoning about decimals and its relation to fraction learning and mathematics achievement. Journal of Educational Psychology, 111(4), 604-618. https://doi.org/10.1037/edu0000309
  • Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S. y Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20, 8-27. https://doi.org/10.2307/749095
  • Rinne, L. F., Ye, A. y Jordan, N. C. (2017). Development of fraction comparison strategies: A latent transition analysis. Developmental Psychology, 53(4), 713- 730. https://doi.org/10.1037/dev0000275
  • Sackur-Grisvard, C. y Léonard, F. (1985). Intermediate cognitive organizations in the process of learning a mathematical concept: The order of positive decimal numbers. Cognition and Instruction, 2(2), 157-174. https://doi.org/10.1207/s1532690xci0202_3
  • Siegler, R. S. y Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. Journal of Educational Psychology, 107(3), 909-918. https://doi.org/10.1037/edu0000025
  • Siegler, R. S., Thompson, C. A. y Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273- 296. https://doi.org/10.1016/j.cogpsych.2011.03.001
  • Smith, C. L., Solomon, G. E. y Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51(2), 101-140. https://doi.org/10.1016/j.cogpsych.2005.03.001
  • Smith, J. P. (1995). Competent reasoning with rational numbers. Cognition and Instruction, 13(1), 3-50. https://doi.org/10.1207/s1532690xci1301_1
  • Stafylidou, S. y Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and Instruction, 14(5), 503-518. https://doi.org/10.1016/j.learninstruc.2004.06.015
  • Steinle, V. y Stacey, K. (1998). The incidence of misconceptions of decimal notation amongst students in Grades 5 to 10. En C. Kanes, M. Goos y E. Warren (Eds.), Teaching mathematics in new times (pp. 548–555). Mathematics Education Research Group of Australasia.
  • Torbeyns, J., Schneider, M., Xin, Z. y Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13. https://doi.org/10.1016/j.learninstruc.2014.03.002
  • Vamvakoussi, X., Christou, K. P., Mertens, L. y Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students’ understanding of density. Learning and Instruction, 21(5), 676-685. https://doi.org/10.1016/j.learninstruc.2011.03.005
  • Vamvakoussi, X., Christou, K. P. y Vosniadou, S. (2018). Bridging psychological and educational research on rational number knowledge. Journal of Numerical Cognition, 4(1), 84-106. https://doi.org/10.5964/jnc.v4i1.82
  • Vamvakoussi, X., Van Dooren, W. y Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344-355. https://doi.org/10.1016/j.jmathb.2012.02.001
  • Vamvakoussi, X. y Vosniadou, S. (2007). How many numbers are there in a rational numbers interval? Constraints, synthetic models and the effect of the number line. En S. Vosniadou, A. Baltas y X. Vamvakoussi (Eds.), Reframing the Conceptual Change Approach in Learning and Instruction (pp. 265-282). Elsevier.
  • Van Dooren, W., Lehtinen, E. y Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1-4. https://doi.org/10.1016/j.learninstruc.2015.01.001
  • Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L. y Van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99-108. https://doi.org/10.1016/j.lindif.2017.11.010
  • Van Hoof, J., Verschaffel, L. y Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1), 39-56. https://doi.org/10.1007/s10649-015-9613-3