Diseño de la configuración de brazos robóticos vestibles para tareas de instalación y mantenimiento

  1. Álvarez-Pastor, Jesús 1
  2. Martínez-Pascual, David 1
  3. Blanco, Andrea 1
  4. Catalán, Jose María 1
  5. García-Aracil, Nicolás 1
  6. López-Labrador, Francisco 2
  1. 1 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

  2. 2 Eiffage (France)
Revue:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Année de publication: 2024

Volumen: 21

Número: 1

Pages: 62-68

Type: Article

DOI: 10.4995/RIAI.2023.18746 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Revista iberoamericana de automática e informática industrial ( RIAI )

Résumé

Physical injuries are frequently caused by industrial installation and maintenance tasks such as handling heavy loads, repetitive movements or working in awkward positions. Passive exoskeletons are often used to address this issue. However, the use of supernumerary robotic systems is another approach. This article presents the supernumerary robotic device developed in the SecondArmS project. The results of the initial study of the workspace of the robotic device and the results of the manipulability and singularity analysis of the robotic device are presented. Based on these results, the choice of the wrist of the device between the two alternatives is justified.

Information sur le financement

Financeurs

Références bibliographiques

  • Almodóvar, A., Galiana, M., Hervás, P., Pinilla, F., De la Orden, M., Día, C., et al., 2011. Vii encuesta nacional de condiciones de trabajo. Madrid: Instituto Nacional de Seguridad e Higiene en el Trabajo.
  • Barrientos, A., et al., 2007. Fundamentos de robótica. Biblioteca Hernán Malo González.
  • Blanco, A., Catalán, J. M., Díez, J. A., García, J. V., Lobato, E., García-Aracil, N., 2019. Electromyography assessment of the assistance provided by an upper-limb exoskeleton in maintenance tasks. Sensors 19 (15), 3391. https://doi.org/10.3390/s19153391
  • Blanco, A., Catalán, J. M., Martínez-Pascual, D., García-Pérez, J. V., García-Aracil, N., 2022. The effect of an active upper-limb exoskeleton on metabolic parameters and muscle activity during a repetitive industrial task. Ieee Access 10, 16479-16488. https://doi.org/10.1109/ACCESS.2022.3150104
  • Bonilla, B. L., Asada, H. H., 2014. A robot on the shoulder: Coordinated human-wearable robot control using coloured petri nets and partial least squares predictions. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp. 119-125. https://doi.org/10.1109/ICRA.2014.6906598
  • Daniel, P. H., Asada, H. H., 2020. Stable crawling policy for wearable superlimbs attached to a human with tuned impedance. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3496-3503. https://doi.org/10.1109/IROS45743.2020.9341461
  • Dietrich, A., Ott, C., Albu-Sch¨affer, A., 2015. An overview of null space projections for redundant, torque-controlled robots. The International Journal of Robotics Research 34 (11), 1385-1400. https://doi.org/10.1177/0278364914566516
  • Handschin, J., 1970. Monte carlo techniques for prediction and filtering of nonlinear stochastic processes. Automatica 6 (4), 555-563. https://doi.org/10.1016/0005-1098(70)90010-5
  • Hussain, I., Anwar, M., Iqbal, Z., Muthusamy, R., Malvezzi, M., Seneviratne, L., Gan, D., Renda, F., Prattichizzo, D., 2019. Design and prototype of supernumerary robotic finger (srf) inspired by fin ray® effect for patients suffering from sensorimotor hand impairment. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, pp. 398-403. https://doi.org/10.1109/ROBOSOFT.2019.8722748
  • Kobayashi, H., Aida, T., Hashimoto, T., 2009. Muscle suit development and factory application. International journal of automation technology 3 (6), 709-715. https://doi.org/10.20965/ijat.2009.p0709
  • Kosk-Bienko, J., 2009. European agency for safety and health at work (eu-osha) workplace exposure to nanoparticles. Spain: EU-OSHA.
  • Kurek, D. A., Asada, H. H., 2017. The mantisbot: Design and impedance control of supernumerary robotic limbs for near-ground work. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5942-5947. https://doi.org/10.1109/ICRA.2017.7989700
  • Martínez-Pascual, D., Álvarez-Pastor, J., Verdú-García, F. J., Arnau-Papí, M., Lledó Pérez, L. D., López-Labrador, F., Bernal, M. A., García Aracil, N., 2021. Análisis de planificación de trayectorias libres de colisiones con el operador humano en sistemas robóticos de tipo supernumerario. In: XLII Jornadas de Automática. Universidade da Coru˜na, Servizo de Publicaci'ons, pp. 419-426. https://doi.org/10.17979/spudc.9788497498043.419
  • Parietti, F., Asada, H., 2016. Supernumerary robotic limbs for human body support. IEEE Transactions on Robotics 32 (2), 301-311. https://doi.org/10.1109/TRO.2016.2520486
  • Parietti, F., Asada, H. H., 2014. Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1176-1183. https://doi.org/10.1109/ICRA.2014.6907002
  • Parietti, F., Asada, H. H., 2017. Independent, voluntary control of extra robotic limbs. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5954-5961. https://doi.org/10.1109/ICRA.2017.7989702
  • Parietti, F., Chan, K., Asada, H. H., 2014. Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 141-148. https://doi.org/10.1109/ICRA.2014.6906601
  • Paul, R. P., 1981. Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. Richard Paul.
  • Pheasant, S., Haslegrave, C. M., 2005. Bodyspace: Anthropometry, ergonomics and the design of work. CRC press.
  • Prattichizzo, D., Malvezzi, M., Hussain, I., Salvietti, G., 2014. The sixth-finger: a modular extra-finger to enhance human hand capabilities. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE, pp. 993-998. https://doi.org/10.1109/ROMAN.2014.6926382
  • Salvietti, G., Franco, L., Tschiersky, M., Wolterink, G., Bianchi, M., Bicchi, A., Barontini, F., Catalano, M., Grioli, G., Poggiani, M., et al., 2021. Integration of a passive exoskeleton and a robotic supernumerary finger for grasping compensation in chronic stroke patients: The softpro wearable system. Frontiers in Robotics and AI 8, 661354. https://doi.org/10.3389/frobt.2021.661354
  • Saraiji, M. Y., Sasaki, T., Kunze, K., Minamizawa, K., Inami, M., 2018. Metaarms: Body remapping using feet-controlled artificial arms. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. pp. 65-74. https://doi.org/10.1145/3242587.3242665
  • Yoshikawa, T., 1985. Manipulability of robotic mechanisms. The international journal of Robotics Research 4 (2), 3-9. https://doi.org/10.1177/027836498500400201