New Approaches to Optical Music Recognition

  1. Alfaro Contreras, María
Dirigida per:
  1. José M. Iñesta Quereda Director
  2. Jorge Calvo Zaragoza Director

Universitat de defensa: Universitat d'Alacant / Universidad de Alicante

Fecha de defensa: 22 de de setembre de 2023

Tribunal:
  1. Francesc Josep Ferri Rabasa President/a
  2. Antonio Javier Gallego Sánchez Secretari
  3. Emilia Parada Cabaleiro Vocal
Departament:
  1. LLENGUATGES I SISTEMES INFORMÀTICS

Tipus: Tesi

Teseo: 820519 DIALNET lock_openRUA editor

Resum

El Reconocimiento Óptico de Música (Optical Music Recognition, OMR) es un campo de investigación que estudia cómo leer computacionalmente la notación musical presente en documentos y almacenarla en un formato digital estructurado. Los enfoques tradicionales de OMR suelen estructurarse en torno a un proceso de varias etapas: (i) preprocesamiento de imágenes, donde se abordan cuestiones relacionadas con el proceso de escaneado y la calidad del papel, (ii) segmentación y clasificación de símbolos, donde se detectan y etiquetan los distintos elementos de la imagen, (iii) reconstrucción de la notación musical, una fase de postprocesamiento del proceso de reconocimiento, y (iv) codificación de resultados, donde los elementos reconocidos se almacenan en un formato simbólico adecuado. Estos sistemas logran tasas de reconocimiento competitivas a costa de utilizar determinadas heurísticas, adaptadas a los casos para los que fueron diseñados. En consecuencia, la escalabilidad se convierte en una limitación importante, ya que para cada colección o tipo notacional es necesario diseñar un nuevo conjunto de heurísticas. Además, otro inconveniente de estos enfoques tradicionales es la necesidad de un etiquetado detallado, a menudo obtenido manualmente. Dado que cada símbolo se reconoce individualmente, se requieren las posiciones exactas de cada uno de ellos, junto con sus correspondientes etiquetas musicales. Los enfoques tradicionales de OMR suelen estructurarse en torno a un proceso de varias etapas: (i) preprocesamiento de imágenes, donde se abordan cuestiones relacionadas con el proceso de escaneado y la calidad del papel, (ii) segmentación y clasificación de símbolos, donde se detectan y etiquetan los distintos elementos de la imagen, (iii) reconstrucción de la notación musical, una fase de postprocesamiento del proceso de reconocimiento, y (iv) codificación de resultados, donde los elementos reconocidos se almacenan en un formato simbólico adecuado. Estos sistemas logran tasas de reconocimiento competitivas a costa de utilizar determinadas heurísticas, adaptadas a los casos para los que fueron diseñados. En consecuencia, la escalabilidad se convierte en una limitación importante, ya que para cada colección o tipo notacional es necesario diseñar un nuevo conjunto de heurísticas. Además, otro inconveniente de estos enfoques tradicionales es la necesidad de un etiquetado detallado, a menudo obtenido manualmente. Dado que cada símbolo se reconoce individualmente, se requieren las posiciones exactas de cada uno de ellos, junto con sus correspondientes etiquetas musicales. La incorporación del Aprendizaje Profundo (Deep Learning, DL) en el OMR ha producido un cambio hacia el uso de sistemas holísticos o de extremo a extremo basados en redes neuronales para la etapa de segmentación y clasificación de símbolos, tratando el proceso de reconocimiento como un único paso en lugar de dividirlo en distintas subtareas. Al aprender simultáneamente los procesos de extracción de características y clasificación, estas soluciones eliminan la necesidad de diseñar procesos específicos para cada caso: las características necesarias para la clasificación se infieren directamente de los datos. Para lograrlo, solo son necesarios pares de entrenamiento formados por la imagen de entrada y su correspondiente transcripción. En otras palabras, este enfoque evita la necesidad de anotar las posiciones exactas de los símbolos, lo que simplifica aún más el proceso de transcripción. El enfoque de extremo a extremo ha sido recientemente explorado en la literatura, pero siempre bajo la suposición de que un determinado preproceso ya ha segmentado los diferentes pentagramas de una partitura. El objetivo es, por tanto, recuperar la serie de símbolos musicales que aparecen en una imagen de un pentagrama. En este contexto, las Redes Neuronales Convolucionales Recurrentes (Convolutional Recurrent Neural Networks, CRNN) representan el estado del arte: el bloque convolucional se encarga de extraer características relevantes de la imagen de entrada, mientras que las capas recurrentes interpretan estas características en términos de secuencias de símbolos musicales. Las CRNN se entrenan principalmente utilizando la función de pérdida de Clasificación Temporal Conexionista (Connectionist Temporal Classification, CTC), la cual permite el entrenamiento sin requerir información explícita sobre la ubicación de los símbolos en la imagen. Para la etapa de inferencia, generalmente se emplea una política de decodificación voraz, es decir, se recupera la secuencia de mayor probabilidad. Esta tesis presenta una serie de contribuciones, organizadas en tres grupos distintos pero interconectados, que avanzan en el desarrollo de sistemas de OMR a nivel de pentagrama más robustos y generalizables. El primer grupo de contribuciones se centra en la reducción del esfuerzo humano al utilizar sistemas de OMR. Se comparan los tiempos de transcripción con y sin la ayuda de un sistema de OMR, observando que su uso acelera el proceso, aunque requiere una cantidad suficiente de datos etiquetados, lo cual implica un esfuerzo humano. Por lo tanto, se propone utilizar técnicas de Aprendizaje Auto- Supervisado (Self-Supervised Learning, SSL) para preentrenar un clasificador de símbolos, logrando una precisión superior al 80% al utilizar solo un ejemplo por clase en el entrenamiento. Este clasificador de símbolos puede acelerar el proceso de etiquetado de datos. El segundo grupo de contribuciones mejora el rendimiento de los sistemas de OMR de dos maneras. Por un lado, se propone una codificación musical que permite reconocer música monofónica y homofónica. Por otro lado, se mejora el rendimiento de los sistemas mediante el uso de la bidimensionalidad de la representación agnóstica, introduciendo tres cambios en el enfoque estándar: (i) una nueva arquitectura que incluye ramas específicas para captura características relacionadas con la forma (duración del evento) o la altura (tono) de los símbolos musicales, (ii) el uso de una representación de secuencia dividida, que requiere que el modelo prediga los atributos de forma y altura de manera secuencial, y (iii) un algoritmo de decodificación voraz personalizado que garantiza que la representación mencionada se cumple en la secuencia predicha. El tercer y último grupo de contribuciones explora las sinergias entre OMR y su equivalente en audio, la Transcripción Automática de Música (Automatic Music Transcription, AMT). Estas contribuciones confirman la existencia de sinergias entre ambos campos y evalúan distintos enfoques de fusión tardía para la transcripción multimodal, lo que se traduce en mejoras significativas en la precisión de la transcripción. Por último, la tesis concluye comparando los enfoques de fusión temprana y fusión tardía, y afirma que la fusión tardía ofrece más flexibilidad y mejor rendimiento.