Floristic composition, structure and species conservation status of Mauritia flexuosa palm swamps in Andean-Amazonian piedmont in the Department of San Martín, Peru

  1. Yakov Mario Quinteros-Gómez 1
  2. Octavio Monroy-Vilchis 2
  3. Martha Mariela Zarco-González 2
  4. Ángel Rolando Endara-Agramont 2
  5. Xareni P. Pacheco 2
  1. 1 Universidad Norbert Wiener
  2. 2 Universidad Autónoma del Estado de México
    info

    Universidad Autónoma del Estado de México

    Toluca de Lerdo, México

    ROR https://ror.org/0079gpv38

Zeitschrift:
Revista Mexicana de Biodiversidad

ISSN: 2007-8706 1870-3453

Datum der Publikation: 2021

Ausgabe: 92

Nummer: 1

Art: Artikel

DOI: 10.22201/IB.20078706E.2021.92.3186 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Revista Mexicana de Biodiversidad

Zusammenfassung

We investigated the floristic composition, structure and conservation status of plant species in Mauritia flexuosa palm swamps of the Peruvian Amazonia. The study was carried out in 4 sites at the localities of Tingana and Posic. In each site, 25 plots of 20 × 20 m were established and all individuals ≥ 1 cm diameter at breast height were recorded. In total, 5,795 individuals and 112 species were registered. Rubiaceae was the family with the largest number of species and Arecaceae with the largest number of individuals. The most ecologically important species was M. flexuosa in all 4 sites. Abundance was significantly different among sites but not the richness, which was generally low due to the presence of hyperdominant species. Canopy and understory species showed differences in richness and abundance among 4 sites. Mantel test showed relationship between floristic similarity and geographic distances. Nonmetric multidimensional scaling and analysis of similarities revealed 3 floristic groups. Our sites comprise 8 endemic species, 13 protected species (IUCN), and 2 CITES species. These swamps should be conserved or sustainably managed to avoid being affected by the increasing land-use change and the selective extraction of species in the region.

Bibliographische Referenzen

  • Acevedo-Quintero, J. F., & Zamora-Ábrego, J. G. (2016). Role of mammals on seed dispersal and predation processes of Mauritia flexuosa (Arecaceae) in the Colombian Amazon. Revista de Biología Tropical, 64, 5–15.
  • Aguilar, B. V., & Jiménez, F. H. (2009). Diversidad y distribución de palmas (Arecaceae) en tres fragmentos de bosque muy húmedo en Costa Rica. Revista de Biología Tropical, 64, 83–92.
  • Alva, J. E., Meneses, J. F., Chang, L. A., Lara, J. L., & Nishimura, T. (1992). Efectos en el terreno ocasionados por los sismos del Alto Mayo en Perú. Earthquake Engineering, Tenth World Conference. Balkema, Rotterdam.
  • Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Mascaro, J. et al. (2014). The high-resolution Carbon Geography of Perú. Berkeley, CA: Minuteman Press.
  • Assis, R. L., & Wittmann, F. (2011). Forest structure and tree species composition of the understory of two central Amazonian várzea forests of contrasting flood heights. Flora, 206, 251–260.
  • Balslev, H., Eiserhardt, W., Kristiansen, T., & Pedersen, D. (2010). Palms and palm communities in the upper Ucayali river valley –a little known region in the Amazon basin. Palms, 54, 57–72.
  • Barthelmes, A., Ballhorn, U., & Couwenberg, J. (2015). Consulting Study 5: Practical guidance on locating and delineating peatlands and other organic soils in the Tropics. The High Carbon Stock Science Study.
  • Begón, M., Townsend, C. R., & Harper, J. L. (2006). Ecologia: de individuos a ecossistemas. Sao Paulo, Brazil: Artmed editora.
  • Bhomia, R. K., van Lent, J., Rios, J. M. G., Hergoualc’h, K., Coronado, E. N. H., & Murdiyarso, D. (2018). Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitigation and Adaptation Strategies for Global Change, 24, 645–668.
  • Börner, A., & Zimmermann, R. (2003). Classification of East-Andean Forest Amphibiomes in the Río AvisadoWatershed, AltoMayo Region, NorthernPeru. Lyonia, 3, 29–36.
  • Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. (2005). Un nuevo método estadístico para la evaluación de la similitud en la composición de especies con datos de incidencia y abundancia. In G. Halffter, J. Soberón, P. Koleff y A. Melic (Eds.), Sobre diversidad biológica. El significado de las diversidades alfa, beta y gamma (pp. 85–95). Zaragoza, España: Grupo DIVERSITAS & CONACYT.
  • Colwell, R. K. (2000). A barrier runs through it… or maybe just a river. Proceeding of the National Academy of Sciences of the United States of America, 97, 13470–13472. https://doi. org/10.1073/pnas.250497697
  • Colwell, R. K. (2013). Programa EstimateS (Statical Estimation of Species Richness and Shared Species from Samples). Version 9. http://viceroy.colorado.edu/estimates/
  • Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society, 345, 101–118.
  • Costa, F. R. C., Guillaumet, J. L., Lima, A. P., & Pereira, O. S. (2008). Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science, 20, 69–78. https://doi. org/10.1111/j.1654-1103.2009.05314.x
  • Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic of phytosociological characters. Ecology, 31, 434–455.
  • Dietz, J., Dempewolf, J., Börner, A., Mette, T., Perisutti, A., & Zimmermann, R. (2003). Ecological classification of pristine premontane vegetation in the Alto Mayo Valley, Peru. Lyonia, 3, 73–82.
  • Diniz-Filho, J. A. F., Loyola, R. D., Raia, P., Mooers, A. O., & Bini, L. M. (2013). Darwinian shortfalls in biodiversity conservation. Trends in Ecology and Evolution, 28, 689–695. https://doi.org/10.1016/j.tree.2013.09.003
  • Draper, F. C., Coronado, E. N. H., Roucoux, K. H., Lason, I. T., Pitman, N. C., Fine, P. V. et al. (2018). Peatland forests are the least diverse tree communities documented in Amazonia but contribute to high regional beta-diversity. Ecography, 41, 1–14. https://doi.org/10.1111/ecog.03126
  • Drucker, D. P., Costa, F. R. C., & Magnusson, W. E. (2008). How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. Journal of Tropical Ecology, 24, 65–74. https://doi.org/10.1017/S0266467407004701
  • Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391–1416. https://doi. org/10.1093/aob/mcr146
  • Emilio, T., Quesada, C. A., Costa, F. R. C., Magnusson, W. E., Schietti, J., Feldpausch, T. R. et al. (2014). Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 7, 215–229. https:// doi.org/10.1080/17550874.2013.772257
  • Endara, A., Franco, S., Nava, G., Valdez, J., & Fredericksen, T. (2012). Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. Journal of Forestry Research, 23, 39–44.
  • Endress, B. A., Horn, C. M., & Gilmore, M. P. (2013). Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. Forest Ecology Management, 302, 346–353. https://doi. org/10.1016/j.foreco.2013.03.051
  • Fajardo, A., Veneklaas, E., Obregon, S., & Beaulieu, N. (1999). Los bosques de galería. Guía para su apreciación y su conservación. Cali, Colombia: Centro Internacional de Agricultura Tropical.
  • Fujiyoshi, R., Satake, Y., Sato, T., Sumiyoshi T., Dietz, J., & Zimmermenn, R. (2009). Natural and anthropogenic consequences of tropical forest soils in Northern Peru using environmental radionuclides as radiotracers. Journal of Radioanalytical and Nuclear Chemistry, 279, 509–518.
  • Galeano, A., Urrego, L. E., Sánchez, M., & Peñuela, M. C. (2015). Environmental drivers for regeneration of Mauritia flexuosa L.f. in Colombian Amazon swamp forest. Aquatic Botany, 123, 47–53
  • Gentry, A. H., & Ortiz, R. (1993). Patrones de composición florística en la Amazonía Peruana. In R. Kalliolla, M. Puhakka, & W. Danjoy (Eds.), Vegetación húmeda tropical en el llano subandino (pp 155–166). Jyväskylä, Finland: Proyecto Amazonia Universidad de Turku (PAUT)/ Oficina Nacional de Evaluación de Recursos Naturales (ONERN).
  • González-Ramírez, M., Zaragoza-Caballero, S., & PérezHernández, C. X. (2017). Análisis de la diversidad de Coleoptera en el bosque tropical caducifolio en Acahuizotla, Guerrero, México. Revista Mexicana de Biodiversidad, 88, 381–388. https://doi.org/10.1016/j.rmb.2017.03.008
  • Hammer, O., Harper D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistic software package for education and data analysis. Paleontologia Electronica, 4, 9–41.
  • Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M., & Verchot, L.V. (2017). Caracterización de la degradación de los pantanos de palmeras turbosos desde el espacio y sobre el terreno: un estudio exploratorio en la Amazonia peruana. Documentos Ocasionales 179. Bogor, Indonesia: CIFOR.
  • Honorio, C. E., Vega, A. J., & Corrales, M. N. (2015). Diversidad, estructura y carbono de los bosques aluviales del noreste peruano. Folia Amazónica, 24, 55–70.
  • Householder, J. E., Janovec, J. P., Tobler, M. W., Page, S., & Lähteenoja, O. (2012). Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands, 32, 359–68. https://doi.org/10.1007/ s13157-012-0271-2
  • Janovec, J., Householder, E., Tobler, M., Valega, R., von May, R., Araujo, J. et al. (2013). Evaluación de los actuales impactos y amenazas inminentes en aguajales y cochas de Madre de Dios, Perú. Lima: WWF.
  • Jiménez-Valverde, A., & Hortal, J. (2003). Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología, 8, 151–161.
  • Junk, W. J. (1989). Flood tolerance and tree distribution in central Amazonian floodplains. In L.B. Holm-Nielsen, I. C. Nielsen, & H. Balslev (Eds.), Tropical forests: botanical dynamics, speciation, and diversity (pp. 47–64). New York: Academic Press.
  • Junk, W., Piedade, M., Wittmann, F., Schöngart, J., & Parolin, P. (Eds.). (2010). Amazonian floodplain forests. Ecological studies (analysis and synthesis). Dordrecht: Springer.
  • Kageyama, P. Y., Gandara, F. B., & Souza, L. (1998). Consequências genéticas da fragmentação sobre populações de espécies arbóreas. Piracicaba, Brazil: Série Técnica IPEF, 12.
  • Kalliola, R., Puhakka, M., Salo, J., Tuomisto, H., & Ruokolainen, K. (1991). The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici, 28, 225–239.
  • Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 193, 707–713.
  • Kurtz, B.C., Gomes, J. C., & Scarano, F. R. (2013). Structure and phytogeographic relationships of swamp forests of Southeast Brazil. Acta Botânica Brasílica, 27, 647–660. https://doi. org/10.1590/S0102-33062013000400002
  • Lähteenoja, O., & Page, S. (2011). High diversity of tropical peatland ecosystem types in the Pastaza Marañón basin, Peruvian Amazonia, Journal of Geophysical Research, 116, 1–14.
  • Ludwig, D. (1999). Is it meaningful to estimate the probability of extinction? Ecology, 80, 298–310. https://doi. org/10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2
  • Luize, B. G., Magalhães, J. L. L., Queiroz, H., Lopes, M. A., Venticinque, E. M., Leão de Moraes-Novo, E. M. et al. (2018). The tree species pool of Amazonian wetland forests: Which species can assemble in periodically waterlogged habitats? Plos One, 13, 1–13. https://doi.org/10.1371/ journal.pone.0198130
  • Meister, K., Ashton, M.S., Craven, D., & Griscom, H. (2012). Carbon dynamics of tropical forests. In M.S. Ashton, M.L. Tyrrell, D. Spalding, & B. Gentry (Eds.), Managing forest Carbon in a changing climate. Dordrecht: Springer. https:// doi.org/10.1007/978-94-007-2232-3_4
  • Melack, J. M., & Hess, L. L. (2010). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian floodplain forests (pp. 43–59). Dordrecht, Heidelberg, London, New York: Springer.
  • Montufar, R., & Pintaud, J. C. (2006). Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of Linnean Society, 151, 127–140.
  • Nebel, G., Kvist, L. P., Vanclay, J. K., Christensen, H., Freitas, L., & Ruiz, J. (2001). Structure and floristic composition of flood plain forests in the Peruvian Amazon: I. Overstorey. Forest Ecology and Management, 150, 27–57. http://dx.doi. org/10.1016/S0378-1127(00)00680-0
  • ONERN (Oficina Nacional de Evaluación de Recursos Naturales). (1983). Inventario y evaluación semidetallada de los recursos de suelos, forestales y uso actual de la tierra de la Cuenca alta del Río Mayo (Sector Río Tumbaro - Ríio Avisado). Lima ONERN.
  • Palminteri, S., Powekk, G. V. N., & Peres, C. A. (2011). Regional-scale heterogeneity in primate community structure at multiple undisturbed forest sites across south-eastern Peru. Journal of Tropical Ecology, 27, 181–194. https://doi. org/10.1017/S0266467410000684
  • Parolin, P., Adis, J., Rodrigues, W. A., Amaral, I., & Piedade, M. T. F. (2004) Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Tarumã-Mirim, Rio Negro). Amazoniana, 18, 29–47.
  • Parolin, P., Wittmann, F., & Schongart, J. (2010). Tree phenology in Amazonian floodplain forests. In W. J. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian floodplain forests (pp. 105–126). Dordrecht, Heidelberg, London, New York: Springer.
  • PEAM (Proyecto Especial Alto Mayo). (2004). Boletín meteorológico e hidrológico del Alto Mayo, 1996 –2004. Moyobamba, Región San Martín, Perú: SENAMHI.
  • Pitman, N., Terborgh, J., Silman, M. R., & Nuñez, P. (1999). Tree species distributions in an upper Amazonian forest. Ecology, 80, 2651–2661.
  • Quaresma, A. C., Piedade, M. T. F., Oliveira, Y. F., Wittmann, F., & ter Steege, H. (2017). Composition, diversity and structure of vascular epiphytes in two contrasting Central Amazonian floodplain ecosystems. Acta Botânica Brasílica, 31, 686–697. http://doi.org/10.1590/0102-33062017abb0156
  • Quinteros G. Y., Roca A. F., & Quinteros, V. (2016). Ecología, uso y conservación de los aguajales en el Alto Mayo, San Martín. Un estudio sobre las concentraciones de Mauritia flexuosa en la selva peruana. In C. A. Lasso, A. Rial, & B. V. González (Eds.), VII. Morichales, cananguchales y otros palmares inundables de Suramérica (pp. 265–283). Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
  • Rull, V., & Montoya, E. (2014). Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a neotropical context. Quaternary Science Reviews, 99, 17–33. https://doi.org/10.1016/j.quascirev.2014.06.007
  • Ruokolainen, K., Schulman, L., & Tuomisto, H. (2001). On Amazon peatlands. International Mire Conservation Group Newsletter, 4, 8–10.
  • Ruokolainen, K., Tuomisto, H., Macía, M., Higgins, M., & Yli-Halla, M. (2007). Are floristic and edaphic patterns in Amazonian rain forests congruent for trees, Pteridophytes and Melastomataceae? Journal of Tropical Ecology, 23, 13–25.
  • Scolforo, J. R., Pulz, F.A., & Melo, J. M. (1998) Modelagem da produção, idade das florestas nativas, distribuição espacial das espécies e análise estrutural. In J. R. Scolforo (Ed.), Manejo forestal (pp. 189–206). Lavras, Brazil: UFLA/ FAEPE.
  • Siqueira, C., Bahia, G. A., De Tarso, A. P., & Pontes, R. S. (2012). Annual and seasonal changes in the structure of litter-dwelling ant assemblages (Hymenoptera: Formicidae) in Atlantic Semideciduous Forests. Psyche, 2012, 959715.
  • Slade, E. M., Mann, D. J., Villanueva, J. F., & Lewis, O. T. (2007). Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, 76, 1094–104. https://doi.org/10.1111/j.1365-2656.2007.01296.x
  • Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30, 3–12. https://doi.org/10.1111/j.0906-7590.2007.04817.x
  • Sokal, R. R., & Rohlf, F.G. (1995). Biometry. 3rd Ed. New York: Freeman Co.
  • Ter Steege, H., Pitman, N. C. A, Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E. et al. (2013). Hyperdominance in the Amazonian tree flora. Science, 342, 1243092. https:// doi.org/10.1126/science.1243092
  • Tilman, D., & Lehman, C. (2001). Human-caused environmental change: impacts on plant diversity and evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 5433–5440.
  • Toivonen, J. M., Suominen, L., Gonzáles-Inca, C. A., Trujillo, P. G., & Jones, M. M. (2017). Environmental drivers of vascular and non-vascular epiphyte abundance in tropical premontane cloud forests in Northern Peru. Journal of Vegetation Science, 28, 1198–1208. https://doi.org/10.1111/jvs.12577
  • Urrego, L. E. (1997). Los bosques inundables en el Medio Caquetá: Caracterización y sucesión. Serie estudios en la Amazonia colombiana, Colombia: Fundación Tropenbos.
  • Urrego, L. (2018). Cananguchales y manglares: humedales forestales de las zonas bajas tropicales, tan semejantes como contrastantes. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42, 80–95.
  • Van Dyke, F. (2008). The conservation of populations: concept, theory and analysis. In F. Van Dyke (Ed.), Conservation biology. Foundations, concepts, applications (pp. 213-242). New York: Springer.
  • Wittmann, F., Schongart, J., Montero, J. C., Motzer, T., Junk, W. J., Piedade, M. T. F. et al. (2006). Tree species composition and diversity gradients in white-water forests across the Amazon Basin. Journal of Biogeography, 33, 1334–1347. https://doi.org/10.1111/j.1365-2699.2006.01495.x
  • XLSTAT (2017). Data analysis and statistical solution for Microsoft Excel. Paris: Addinsoft.
  • Young, K. R., & León, B. (2000). Biodiversity conservation in Peru’s Eastern montane forests. Mountain Research and Development, 20, 208–211.
  • Zárate, R., Mori, T. J., & Maco, J. T. (2013). Estructura y composición florística de las comunidades vegetales del ámbito de la carretera Iquitos-Nauta, Loreto-Perú. Folia Amazónica, 22, 77–89. https://doi.org/10.24841/ fa.v22i1-2.50