Mineralogía y dinámica del arsénico en suelos de mina

  1. Salvadora Martínez-López 1
  2. Pedro Andreo-Martínez 1
  3. Carmen Pérez-Sirvent 1
  4. Maria Jose Martínez-Sánchez 1
  1. 1 Departamento de Química Agrícola, Geología y Edafología. Universidad de Murcia. Campus Mare Nostrum, 30100 Murcia, Spain
Revista:
Afinidad: Revista de química teórica y aplicada

ISSN: 0001-9704

Año de publicación: 2022

Volumen: 79

Número: 595

Páginas: 255-263

Tipo: Artículo

Otras publicaciones en: Afinidad: Revista de química teórica y aplicada

Resumen

The main objective of this work was to determine the concentration and inorganic forms of arsenic present in the soil/sediment of the Sierra Minera de Cartagena-La Union as well as to establish the processes of alteration of the minerals to which it is associated. For the determination of arsenic was used the technique of atomic fluorescence spectrometry. The results showed very high concentrations of arsenic, in the vicinity of areas of accumulation of mining waste, the predominant form being the As (V). A good correlation is obtained between arsenic and iron present in these soils and also between arsenic and some minerals (phyllosilicates 14, gypsum y hematite). It is concluded that the processes of mobilization and release of As depends on the minerals present in the soil.

Referencias bibliográficas

  • Chojnacka, K., Chojnackib, A., Górecka, H., Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Total Environ. 2005. 337, 175- 182.
  • Pérez-Sirvent, C., Martínez-Sánchez, M.J., Martínez-López, S., Hernández-Córdoba, M. Antimony distribution in soils and plants near an abandoned mining site. Microchemical Journal. 2011. 97(1), 52-56.
  • Madeira, A.C., Varennes, A., Abreu, M.M., Esteves, C., Magalhães, M.C.F. Tomato and parsley growth, arsenic uptake and translocation in a contaminated amended soil. J. Geochem. Explor. 2012.123,114-121.
  • Martínez-López, S., Martínez-Sánchez, M.J., Pérez-Sirvent, C., Bech, J., Gómez Martínez, M.C., García-Fernández, A.J. Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. J. Soils Sediments. 2014. 14(4), 794-809.
  • Álvarez-Ayuso, E., Abad-Valle, P., Murciego, A., Villar-Alonso, P. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Total Environ. 2016. 542, 238-246.
  • Zhao, C., Zheng, J.Y.Y., Yang, J., Guo, G., Wang, J., Chen, T. Effects of environmental governance in mining areas: The trend of arsenic concentration in the environmental media of a typical mining area in 25 years. Chemosphere. 2019. 235, 849-857.
  • Santos, E.S., Abreu, M.A., Macías, F. Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere. 2019. 224, 765-775.
  • Aguilar, N.C., Faria, M C.S., Pedron, T., Batista, B.L., Mesquita, J.P., Bomfeti, C.A., Jairo L. Rodrigues. Isolation and characterization of bacteria from a brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere. 2020. 240,124871.
  • Navarro-Hervás, M.C., Pérez-Sirvent, C., Martínez-Sánchez, M.J., Vidal, J., Tovar, P.J., Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008. 96(2-3), 183-193.
  • García-Lorenzo, M.L., Pérez-Sirvent, C., Martínez-Sánchez, M.J., Molina-Ruiz, J. Trace elements contamination in an abandoned mining site in a semiarid zone. J. Geochem. Explor. 2012. 113, 23-35.
  • Hernández Pérez, C. Trazabilidad de elementos potencialmente peligrosos en humedales con influencia minera. 2017. Tesis Doctoral.
  • Ecoefficient In Situ Technologies for the Remediation of Sites Affected by Old Mining Activities: The Case of Portman Bay. Assessment, Restoration and Reclamation of Mining Influenced Soils. 2017. Pages 355-373, ISBN 9780128095881, https://doi.org/10.1016/B978-0-12-809588-1.00013-X.
  • Xue, S., Shi, L., Wu, C., Wu, H., Qin, Y., Pan, W., Hartley, W., Cui, M. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines. Environ Res. 2017, 156, 23-30.
  • Galanopoulos, E., Skarpelis, N., Argyraki, A. Supergene alteration, environmental impact and laboratory scale acid water treatment of Cyprustype ore deposits: case study of Mathiatis and Sha abandoned mines. Geochemistry: Exploration, Environment, Analysis. 2019. 19(4), 299-315.
  • Baltazar Tabelin, C., Silwamb, M., C. Paglinawan, F., Mondejar, A.J., Gia Duc, H., Resabal, V.J., M. Opiso, E., Igarashi, T., Tomiyama, S., Ito, M., Hiroyoshi, N., Villacorte-Tabelin, M. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scalegold mining (ASGM) activities. Chemosphere. 2020. 260, 127574.
  • Somani, M., Datta, M., Ramana, G.V., Sreekrishnan, R.R. Contaminants in soil-like material recovered by landfill mining fromfive old dumps in India. Process Saf Environ. 2020. 137, 82-92.
  • Tapio, S., Grosche, B. Arsenic in the aetiology of cancer. Review. Mutat. Res. 2006. . 612, 215–246.
  • Kabata-Pendias, A. Trace elements from soil to Human. Environ Sci. 2007, 381-389
  • Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd Edition. 2001.Springer-Verlag. 866 pp .
  • Fitz and Wenzel. Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation. J. biotechnol. 2002. 99 10.1016/S0168-1656(02)00218-3.
  • Cornelis, R., Caruso, J., Crews, H., Heumann, K. Handbook of Elemental Speciation II. Species in the Environment, Food, Medicine and Occupational Health. 2005.
  • Drahota, P., Adam, K., Magdaléna, C., Jan, K., František, R., Martin Racek, V. Arsenic mineralogy of near-neutral soils and mining waste at the Smolotely-Líšnice historical gold district, Czech Republic. Appl Geochem. 2017. 89, 243-254.
  • Martínez-Sánchez, M.J., Martínez-López, S., García-Lorenzo, M.L., Martínez-Martínez, L.B., Pérez-Sirvent, C. Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma. 2011, 160(3-4), 535-541.
  • Martínez-Sánchez, M.J., Martínez-López, S., Martínez-Martínez, L.B., Perez-Sirvent, C. Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. J Environ Manage. 2013. 116, 10-17.
  • Martínez López, S., Martínez-Sánchez, M.J., Gómez Martínez, M.C., Carmen Pérez-Sirvent., C. Assessment of the risk associated with miningderived arsenic inputs in a lagoon system. Environ Geochem Health. 2019. https://doi.org/10.1007/s10653-019-00385-5(0123456789
  • Martínez-López, S., Martínez-Sánchez, M.J., Gómez-Martínez, M.L., Pérez-Sirvent, C. Arsenic zoning in a coastal area of the Mediterranean Sea as a base for management and recovery of areas contaminated by old mining activities. Appl Clay Sci. 2020, 199, 105881.
  • Ruiz-Chancho, M.J., López-Sánchez, J.F., Schmeisser, E., Goessler, W., Franceconi, K.A., Rubio, R. Arsenic speciation in plants growing in arsenic-contaminates sites. Chemosphere. 2008, 71, 1522-1530.
  • Rutter, A., Mir, K., Koch, I., Smith, P., Reimer, K., Poland, J. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta. 2007. 72, 15507-1518.
  • El-Hadri, F., Morales-Rubio, A., de la Guardia, M. Atomic fluorescence spectrometric determination of trace amounts of arsenic and antimony in drinking water by continuous hydride generation. Talanta. 2000. 52, 653-662.
  • Cava-Montesinos, P., de la Guardia, A., Teutsch, C., Cervera, M.L., de la Guardia, M. Non-chromatographic speciation analysis of arsenic and antimony in milk hydride generation atomic fluorescence spectrometry. Anal. Chim. 2003. Acta 493, 195-203.
  • Michon, J., Deluchat, V., Shukry, R.A., Dagot, C., Bollinger, J.C. Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water. Talanta. 2007. 71, 479-485.
  • Galán Huertos, E., González Díez, I., Aparicio Fernández, P., Romero Baena, A. Informe privado. Estudio de la Afección de un Suelo Por Contaminación con Arsénico. Estudios, Trabajos y Dictámenes. 2009. Consejería de Medio Ambiente - Universidad de Sevilla. Junta de Andalucía.
  • Martin, D.,2004. Qualitative, Quantitative and Microtextural Powder X-ray Diffraction Analysis. http://www.xpowder.com/.
  • Plant J.A., Kinniburgh, Smedly P.L., Fordyce F.M., Kinck B.A. Arsenic and selenium. Chapter 9.2 in Environmental Geochemistry. 2005. Treatise on Geochemistry L. Sherwood (Ed.). Elsevier.
  • Churchman, G.J. The alteration and Formation of Soil Minerals by Weathering. 2000. En: Handbook of Soil Science. E. Sumner, M.E. CRC Press.
  • Bigham, J.M., Schwertmann, U., Carlson, L. Mineralogy of Precipitates Formed by the Biogeochemical Oxidation of Fe (II) in Mine Drainage. 1992. En: Biomineralization. Processes of Iron and Manganese, modern and ancient environments. Eds. Skinner, H.C. V. y Fitzpatrick, R. W. Catena. 432pp.
  • Rimstidt, J.D., Newcomb, W.D. Measurement and analysis of rate data. The rate reaction of ferric iron with pyrite. Geochimica et Coschimica. 1993. Acta 61, 2553-2558.
  • Dove, P. M., Rimstidt, J.D. The solubility and stability of scorodite, FeAsO4. 2H2O. Am. Mineral. 1985. 70, 838-844.
  • Foster, A.L., Brown Jr, G.E., Tingle, T.N., Parks, G.A. Quantitative speciation of As in mine tailings using x-ray absorption spectroscopy. Am. Mineral.1998. 83,553.
  • Lundgren, D.G., Silver, M. Ore Leaching by Bacteria. Annual Review of Microbiology. 1980. 34, 263-283.
  • Alloway, B. J. The origins of heavy metals in soils. En: Heavy Metals in Soils. 1995. Ed. Alloway B. J. Blackie Academic and Professional Publ. New York. 368 pp.
  • Nodstrom, D.K. y Alpers, C.N. Negative pH, efflorescent mineralogy and consecuences for environmental restoration at the Iron Mountain Suoerfound Site, California. Proc. Natl. Acad. Sci. 1999. USA. Vol. 96, 3455-3462.
  • Farmer, J. G., Graham, M. Aguas dulces. En: El Medio Ambiente. Introducción a la Química Medioambiental y a la Contaminación. Ed. R. M. Harrison. 2003. Editorial Acribia, S. A. Zaragoza, 461 pp.
  • Lapakko, K. Metal Mine Rock and Waste Characterization Tools: An Overview. Mining, Minerals and Sustainable Development. 2002. No. 67.
  • Chapman, B.M., Jones, D.R., Jung, R.F. Processes controlling metal ion attenuation in acid mine drainage streams. Geochim. Cosmochim.1983. Acta. 47, 1957-1973.
  • Shum, M., Lavkulich, L.M. Use of sample color to estimate oxidized Fe content in mine waste rock. J. Environ Geol. 1999. 37 (4), 281-289.
  • Al, T.A., Martin, C.J., Blowes, D.A. Carbonatemineral/water interactions in sulfide-rich mine tailings. Geochim. Cosmochim Acta. 2000. 64 (23), 3933-3948.