El big data, el desglose espacial y su rol en la detección de problemas de saturación en los destinos turísticos

  1. Patricia Aranda Cuéllar 1
  2. María Jesús Such Devesa 1
  3. Teresa Torregrosa Martí 2
  1. 1 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Economía industrial

ISSN: 0422-2784

Año de publicación: 2022

Título del ejemplar: Sostenibilidad, Innovación y Competitividad Turística

Número: 426

Páginas: 79-84

Tipo: Artículo

Otras publicaciones en: Economía industrial

Resumen

La sostenibilidad de los destinos turísticos ha sido un objetivo de desarrollo a nivel mundial durante la última década, pero la saturación turística y la concentración de oferta alojativa en unos pocos barrios de estos destinos consolidados puede estar alejando este logro. Se ha demostrado que la rápida consolidación del fenómeno de la saturación turística (overtourism), estrechamente vinculado con la economía de plataformas, tiene diversos impactos como el aumento de los precios inmobiliarios o la generación de actitudes de rechazo. Este artículo aborda la relación entre el turismo y la oferta de alojamiento de Airbnb a través de una herramienta con enorme potencial para analizar esta problemática: el Big Data. La importancia de detectar y reconocer la existencia de diferentes grados de saturación de oferta en los destinos turísticos es un punto primordial para garantizar la sostenibilidad social de la actividad

Referencias bibliográficas

  • Alcalde-García, J., Guitart-Casalderrey, N., Pitarch-March, A., Vallvé-Fernández, O. (2018). De la turismofobia a la convivencia turística: el caso de Barcelona. Análisis comparativo con Ámsterdam y Berlín. ITEA , 8(2):25-34.
  • Chon, K.-S., & Olsen, M. D. (1990). Applying the strategic management process in the management of tourism organizations. Tourism Management, 11(3), 206-213. https://doi. org/10.1016/0261-5177(90)90043-9.
  • Dodds, R. and Butler, R. (2019). The phenomena of overtourism: a review. International Journal of Tourism Cities, Vol. 5 No. 4, pp. 519-528. https://doi.org/10.1108/IJTC-06-2019- 0090.
  • Francis, J. Overtourism. (2019). What is It and How Can We Avoid It? Disponible online: www.responsibletravel.com/ copy/what-is-overtourism.
  • Harril, R. (2004). Residents’ Attitudes toward Tourism Development: A Literature Review with Implications for Tourism Planning. https://doi.org/10.1177/0885412203260306.
  • Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of «big data» on cloud computing: Review and open research issues. Information Systems, 47, 98-115. https://doi.org/10.1016/j. is.2014.07.006.
  • Jørgensen, M., & Mckercher, B. (2019). Sustainability and integration – the principal challenges to tourism and tourism research. Journal of Travel & Tourism Marketing, 36. https:// doi.org/10.1080/10548408.2019.1657054.
  • Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7), 2561-2573. https://doi.org/10.1016/j. jpdc.2014.01.003.
  • Li, J., Xu, L., Tang, L., Wang, S., & Li, L. (2018). Big data in tourism research: A literature review. Tourism Management, 68, 301-323. https://doi.org/10.1016/j.tourman.2018.03.009.
  • Milano, C., Cheer, J. M., & Novelli, M. (Eds.). (2019). Overtourism: Excesses, discontents and measures in travel and tourism. CABI.
  • Muler Gonzalez, V., Coromina, L., & Galí, N. (2018). Over- tourism: Residents’ perceptions of tourism impact as an indicator of resident social carrying capacity case study of a Spanish heritage town. Tourism Review, 73(3), 277-296. https://doi.org/10.1108/TR-08-2017-0138.
  • OMT. Centre of Expertise Leisure, Tourism & Hospitality; NHTV Breda University of Applied Sciences & NHL Stenden University of Applied Sciences (2018). ‘Overtourism’? Understanding and Managing Urban Tourism Growth beyond Perceptions. Executive Summary. UNWTO, Madrid.
  • Opillard, F. (2016). From San Francisco’s ‘Tech Boom 2.0’ to Valparaíso’s UNESCO World Heritage Site: resistance to tourism gentrification in a comparative political perspective. In: Colomb C and Novy J (eds), Protest and Resistance in the Tourist City, London: Routledge, pp. 129–151.
  • Park, S., Xu, Y., Jiang, L., Chen, Z., & Huang, S. (2020). Spatial structures of tourism destinations: A trajectory data mining approach leveraging mobile big data. Annals of Tourism Research, 84, 102973. https://doi.org/10.1016/j.annals.2020.102973
  • Peeters, P., Gössling, S., Klijs, J., Milano, C., Novelli, M., Dijkmans, C., Eijgelaar, E., Hartman, S., Heslinga, J., Isaac, R., Mitas, O., Moretti, S., Nawijn, J., Papp, B., & Postma, A. (2018). Research for TRAN Committee—Overtourism: Impact and possible policy responses. 260.
  • Perles Ribes, José & Ramón-Rodriguez, Ana & Moreno-Izquierdo, Luis & Such-Devesa, María. (2020a). Tourism competitiveness and the well-being of residents: a debate on registered and non-registered accommodation establishments. European Journal of Tourism Research. 24. https:// doi.org/10.54055/ejtr.v24i.408.
  • Perles-Ribes, J., Ramón-Rodríguez, A. B., Such-Devesa, M. J., & Moreno-Izquierdo, L. (2020b). Machine learning techniques as a tool for predicting overtourism: The case of Spain. https://doi.org/10.1002/jtr.2383.
  • Ruhanen, L. (2007). Strategic planning for local tourism destinations: An analysis of tourism plans. Tourism and Hospitality Planning & Development: Vol 1, No 3. http://dx.doi. org/10.1080/1479053042000314502.
  • Salas-Olmedo, Moya-Gómez, García-Palomares, & Gutiérrez. (2018). Tourists’ digital footprint in cities: Comparing Big Data sources. Tourism Management. Vol. 66, pp. 13-25. https://doi.org/10.1016/j.tourman.2017.11.001.
  • Shoval, N. & Ahas. (2016). The use of tracking technologies in tourism research: The first decade. Tourism Geographies: Vol 18, No 5. https://doi.org/10.1080/14616688.2016 .1214977.
  • Such-Devesa, M. J., Ramón-Rodríguez, A., Aranda-Cuéllar, P., & Cabrera, A. (2021). Airbnb and Overtourism: An Approach to a Social Sustainable Model Using Big Data. In Strategies in Sustainable Tourism, Economic Growth and Clean Energy (pp. 211-233). Springer, Cham. https://doi. org/10.1007/978-3-030-59675-0_12.
  • Świąder, M. (2018). The implementation of the concept of environmental carrying capacity into spatial management of cities: A review. Management of Environmental Quality: An International Journal, 29(6), 1059-1074. https:// doi.org/10.1108/MEQ-03-2018-0049.
  • Vives-Miró, S., & Rullan, O. (2020). ¿Desposesión de vivienda por turistización? Revalorización y desplazamientos en el Centro Histórico de Palma (Mallorca). Revista De Geografía Norte Grande, (67), 53–71. https://doi.org/10.4067/S0718- 34022017000200004.
  • Xiang, Schwartz, Gerdes, & Uysala. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Jounal of Hospitality Management, vol. 44, pp. 120-130. https://doi.org/10.1016/j. ijhm.2014.10.013.
  • Yang, X., Pan, B., Evans, J. A., & Lv, B. (2015). Forecasting Chinese tourist volume with search engine data. Tourism Management, 46(C), 386-397. https://doi.org/10.1016/j. tourman.2014.07.019.
  • Zheng, X., QianZhou, D., YuFeng, M., & WeiGuo, F. (2017). A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tourism Management, 58, 51-65. https://doi.org/10.1016/j.tourman.2016.10.001.