Manipulación visual-táctil para la recogida de residuos domésticos en exteriores

  1. Castaño-Amorós, Julio 1
  2. Páez-Ubieta, Ignacio de Loyola 1
  3. Gil, Pablo 2
  4. Puente, Santiago Timoteo 2
  1. 1 Universidad de Alicante ; Universidad Miguel Hernández
  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2023

Volumen: 20

Número: 2

Páginas: 163-174

Tipo: Artículo

DOI: 10.4995/RIAI.2022.18534 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Este artículo presenta un sistema de percepcion orientado a la manipulación robótica, capaz de asistir en tareas de navegación, clasificacion y recogida de residuos domésticos en exterior. El sistema está compuesto de sensores táctiles ópticos, cámaras RGBD y un LiDAR. Estos se integran en una plataforma móvil que transporta un robot manipulador con pinza. El sistema consta de tres modulos software, dos visuales y uno táctil. Los módulos visuales implementan arquitecturas CNNs para la localización y reconocimiento de residuos sólidos, además de estimar puntos de agarre. El módulo táctil, también basado en CNNs y procesamiento de imagen, regula la apertura de la pinza para controlar el agarre a partir de informacion de contacto. Nuestra propuesta tiene errores de localizacion entorno al 6 %, una precisión de reconocimiento del 98 %, y garantiza estabilidad de agarre el 91 % de las veces. Los tres modulos trabajan en tiempos inferiores a los 750 ms.

Referencias bibliográficas

  • Altikat, A., Gulbe, A., Altikat, S., 2022. Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environmental Science and Technology 19, 1285-1292. https://doi.org/10.1007/s13762-021-03179-4
  • Bircanoglu, C., Atay, M.and Beser, F., Genc¸, , Kızrak, M. A., 2018. Recyclenet: Intelligent waste sorting using deep neural networks. In: Innovations in intelligent systems and applications. pp. 1-7. https://doi.org/10.1109/INISTA.2018.8466276
  • Bohg, J., Morales, A., Asfour, T., Kragic, D., 2013. Data-driven grasp synthesis- a survey. IEEE Transactions on robotics 30 (2), 289-309. https://doi.org/10.1109/TRO.2013.2289018
  • Bolya, D., Zhou, C., Xiao, F., Lee, Y., 2019. Yolact: Real-time instance segmentation. In: IEEE/CVF Int. Conf. on Computer Vision. pp. 9157-9166. https://doi.org/10.1109/ICCV.2019.00925
  • Castaño-Amoros, J., Gil, P., Puente, S., 2021. Touch detection with low-cost visual-based sensor. In: 2nd Int. Conf. on Robotics, Computer Vision and Intelligent Systems. pp. 136-142. https://doi.org/10.5220/0010699800003061
  • De Gea, V., Puente, S., Gil, P., 2021. Domestic waste detection and grasping points for robotic picking up. 10.48550/arXiv.2105.06825, iEEE Int. Conf. on Robotics and Automation. Workshop: Emerging paradigms for robotic manipulation: from the lab to the productive world.
  • Del Pino, I., Muñoz-Bañon, M., Cova-Rocamora, S., Contreras, M., Candelas, F., Torres, F., 2020. Deeper in blue. Journal of Intelligent & Robotics Systems 98, 207-225. https://doi.org/10.1007/s10846-019-00983-6
  • Donlon, E., Dong, S., Liu, M., Li, J., Adelson, E., Rodriguez, A., 2018. Gelslim: A high-resolution, compact, robust, and calibrated tactile-sensing finger. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1927-1934. https://doi.org/10.1109/IROS.2018.8593661
  • Feng, J., Tang, X., Jiang, X., Chen, Q., 2021. Garbage disposal of complex background based on deep learning with limited hardware resources. IEEE Sensors Journal 21(8), 21050-21058. https://doi.org/10.1109/JSEN.2021.3100636
  • Fu, B., Li, S., Wei, J., Li, Q., Wang, Q., T. J., 2021. A novel intelligent garbage classification system based on deep learning and an embedded linux system. IEEE Access 9), 131134-131146. https://doi.org/10.1109/ACCESS.2021.3114496
  • Guo, N., Zhang, B., Zhou, J., Zhan, K., Lai, S., 2020. Pose estimation and adaptable grasp configuration with point cloud registration and geometry understanding for fruit grasp planning. Computers and Electronics in Agriculture 179, 105818. https://doi.org/10.1016/j.compag.2020.105818
  • He, K., Zhang, X., Ren, S., Sun, J., 2021. Deep residual learning for image recognition. In: IEEE Conf. on Computer Vision And Pattern Recognition. https://doi.org/10.1109/CVPR.2016.90
  • Jiang, D., Li, G., Sun, Y., Hu, J., Yun, J., Liu, Y., 2021. Manipulator grabbing position detection with information fusion of color image and depth image using deep learning. Journal of Ambient Intelligence and Humanized Computing 12 (12), 10809-10822. https://doi.org/10.1007/s12652-020-02843-w
  • Kim, D., Li, A., Lee, J., 2021. Stable robotic grasping of multiple objects using deep neural networks. Robotica 39 (4), 735-748. https://doi.org/10.1017/S0263574720000703
  • Kiyokawa, T., Katayama, H., Tatsuta, Y., Takamatsu, J., Ogasawara, T., 2021. Robotic waste sorter with agile manipulation and quickly trainable detector. IEEE Access 9), 124616-124631. https://doi.org/10.1109/ACCESS.2021.3110795
  • Kolamuri, R., Si, Z., Zhang, Y., Agarwal, A., Yuan, W., 2021. Improving grasp stability with rotation measurement from tactile sensing. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 6809-6816. https://doi.org/10.1109/IROS51168.2021.9636488
  • Lambeta, Chou, P.-W., Tian, S., Yang, B., Maloon, B., Most, V., Stroud, D., Santos, R., B.-A., Kammerer, G., Jayaraman, D., Calandra, R., 2020. Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation. IEEE Robotics and Automation Letters 5(3), 3838-38451. https://doi.org/10.1109/LRA.2020.2977257
  • Lin, Y., Lloyd, J., Church, A., Lepora, N. F., 2022. Tactile gym 2.0: Sim-to-real deep reinforcement learning for comparing low-cost high-resolution robot touch. IEEE Robotics and Automation Letters 7 (4), 10754-10761. https://doi.org/10.1109/LRA.2022.3195195
  • Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikainen, M., 2020. Deep learning for generic object detection: A survey. Int. J. of Computer Vision 128, 261--318. https://doi.org/10.1007/s11263-019-01247-4
  • Liu, Y., Jiang, D., Duan, H., Sun, Y., Li, G., Tao, B., Yun, J., Liu, Y., Chen, B., 2021. Dynamic gesture recognition algorithm based on 3d convolutional neural network. Computational Intelligence and Neuroscience 2021. https://doi.org/10.1155/2021/4828102
  • Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D., 2020. Image segmentation using deep learning: A survey. IEEE Trans on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3059968
  • Newbury, R., Gu, M., Chumbley, L., Mousavian, A., Eppner, C., Leitner, J., Bohg, J., Morales, A., Asfour, T., Kragic, D., et al., 2022. Deep learning approaches to grasp synthesis: A review. arXiv preprint arXiv:2207.02556.
  • Patrizi, A., Gambosi, G., Zanzotto, F., 2021. Data augmentation using background replacement for automated sorting of littered waste. J. of Imaging 7(8), 144. https://doi.org/10.3390/jimaging7080144
  • Redmon, J., 2014. Darknet: Open source neural networks in c. http://pjreddie.com/darknet/.
  • Sahbani, A., El-Khoury, S., Bidaud, P., 2012. An overview of 3d object grasp synthesis algorithms. Robotics and Autonomous Systems 60 (3), 326-336. https://doi.org/10.1016/j.robot.2011.07.016
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: IEEE Conf. on Computer Vision and Pattern Recognition. pp. 4510-4520. https://doi.org/10.1109/CVPR.2018.00474
  • Sandykbayeva, D., Kappassov, Z., Orazbayev, B., 2022. Vibrotouch: Active tactile sensor for contact detection and force sensing via vibrations. Sensors 22 (17). https://doi.org/10.3390/s22176456
  • Shaw-Cortez, W., Oetomo, D., Manzie, C., Choong, P., 2018. Tactile-based blind grasping: A discrete-time object manipulation controller for robotic hands. IEEE Robotics and Automation Letters 3 (2), 1064-1071. https://doi.org/10.1109/LRA.2018.2794612
  • Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. on Learning Representations. DOI: https://doi.org/10.48550/arXiv.1409.1556
  • Suárez, R., Palomo-Avellaneda, L., Martínez, J., Clos, D., García, N., 2020. Manipulador móvil, bibrazo y diestro con nuevas ruedas omnidireccionales. Revista Iberoamericana de Automática e Informática industrial 17 (1), 10-21. https://doi.org/10.4995/riai.2019.11422
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: IEEE Conf. on Computer Vision and Pattern Recognition. pp. 2818-2826. https://doi.org/10.1109/CVPR.2016.308
  • Velasco, E., Zapata-Impata, B. S., Gil, P., Torres, F., 2020. Clasificación de objetos usando percepción bimodal de palpación única en acciones de agarre robótico. Revista Iberoamericana de Automática e Informática Industrial 17 (1) , 44-55. https://doi.org/10.4995/riai.2019.10923
  • Vo, A. H., Son, L., Vo, M., Le, T., 2019. A novel framework for trash classification using deep transfer learning. IEEE Access 7, 178631-178639. https://doi.org/10.1109/ACCESS.2019.2959033
  • Ward-Cherrier, B., Pestell, N., Cramphorn, L., Winstone, B., Giannaccini, M. E., Rossiter, J., Lepora, N. F., 2018. The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies. Soft robotics 5 (2), 216-227. https://doi.org/10.1089/soro.2017.0052
  • Yao, T., Guo, X., Li, C., Qi, H., Lin, H., Liu, L., Dai, Y., Qu, L., Huang, Z., Liu, P., et al., 2020. Highly sensitive capacitive flexible 3d-force tactile sensors for robotic grasping and manipulation. Journal of Physics D: Applied Physics 53 (44), 445109. https://doi.org/10.1088/1361-6463/aba5c0
  • Yuan, W., Dong, S., Adelson, E. H., 2017. Gelsight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 17 (12), 2762. https://doi.org/10.3390/s17122762
  • Zapata-Impata, B., Gil, P., Pomares, J., Torres, F., 2019a. Fast geometry-based computation of grasping points on three-dimensional point clouds. Int. J. of Advanced Robotic Systems, 1-18. https://doi.org/10.1177/1729881419831846
  • Zapata-Impata, B. S., Gil, P., Torres, F., 2019b. Learning spatio temporal tactile features with a convlstm for the direction of slip detection. Sensors 19 (3), 523. https://doi.org/10.3390/s19030523