Subdifferential set of the supremum of lower semi-continuous convex functions and the conical hull intersection property

  1. A. Hantoute 1
  1. 1 Universidad de Alicante, España
Revista:
Top

ISSN: 1863-8279 1134-5764

Año de publicación: 2006

Volumen: 14

Número: 2

Páginas: 355-374

Tipo: Artículo

DOI: 10.1007/BF02837568 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Top

Objetivos de desarrollo sostenible

Resumen

In this paper we give some characterizations for the subdifferential set of the supremum of an arbitrary (possibly infinite) family of proper lower semi-continuous convex functions. This is achieved by means of formulae depending exclusively on the (exact) subdifferential sets and the normal cones to the domains of the involved functions. Our approach makes use of the concept of conical hull intersection property (CHIP, for short). It allows us to establish sufficient conditions guarantying explicit representations for this subdifferential set at any point of the effective domain of the supremum function.