Applicability of deterministic global optimization to the short-term hydrothermal coordination problem
- Ferrer Biosca, Albert
- Narcís Nabona Francisco Director/a
Universidad de defensa: Universitat Politècnica de Catalunya (UPC)
Fecha de defensa: 29 de septiembre de 2005
- Juan Enrique Martínez Legaz Presidente/a
- Jordi Castro Pérez Secretario/a
- Marco A. López Cerdá Vocal
- Rosalind Elster Vocal
- Aris Daniilidis Vocal
Tipo: Tesis
Resumen
Esta Tesis esta motivada por el interés en aplicar procedimientos de optimización global a problemas del mundo real. Para ello, nos hemos centrado en el problema de Coordinación Hidrotérmica de la Generación Eléctrica a Corto Plazo (llamado Problema de Generación en esta Tesis) donde la función objetivo y las restricciones no lineales son polinomios de grado como máximo cuatro. En el Problema de Generación no tenemos disponible una representación en diferencia convexa de las funciones involucradas ni tampoco es posible utilizar la estructura del problema para simplificarlo. No obstante, cuando disponemos de una función continua f(x) definida en un conjunto cerrado y no vacío S el problema puede transformarse en otro equivalente expresado mediante minimize l(z) subject to z 2 D n int. (programa d.c. canónico), donde l(z) es una función convexa (en general suele ser una función lineal) con D y C conjuntos convexos y cerrados. Una estructura matemática tal como Dnint C no resulta siempre aparente y aunque lo fuera siempre queda por realizar una gran cantidad de cálculos para expresarla de manera que se pueda resolver el problema de una manera eficiente desde un punto de vista computacional. La característica más importante de esta estructura es que aparecen conjuntos convexos y complementarios de conjuntos convexos. Por este motivo en tales problemas se pueden usar herramientas analíticas tales como subdifernciales y hiperplanos soporte. Por otro lado, como aparecen conjuntos complementarios de conjuntos convexos, estas herramientas analíticas se deben usar de una manera determinada y combinándolas con herramientas combinatorias tales como cortes por planos, Branco and bound y aproximación interior. En esta tesis se pone de manifiesto la estructura matemática subyacente en el Problema de Generación utilizando el hecho de que los polinomios son expresables como diferencia de funciones convexas. Utilizando esta propiedad describimos el problema como un programa d.c. canónico equivalente. Pero aun mas, partiendo de la estructura de las funciones del Problema de Generación es posible rescribirlo de una manera mas conveniente y obtener de este modo ventajas numéricas desde el punto de vista de la implementación. Basándonos en la propiedad de que los polinomios homogéneos de grado 1 son un conjunto de generadores del espacio vectorial de los polinomios homogéneos de grado m hemos desarrollamos los conceptos y propiedades necesarios que nos permiten expresar un polinomio cualquiera como diferencia de polinomios convexos, También, se ha desarrollado y demostrado la convergencia de un nuevo algoritmo de optimización global (llamado Algoritmo Adaptado) que permite resolver el Problema de Generación. Como el programa equivalente no esta acotado se ha introducido una técnica de subdivisión mediante prismas en lugar de la habitual subdivisión mediante conos. Para obtener una descomposición óptima de un polinomio en diferencia de polinomios convexos, se ha enunciado el Problema de Norma Mínima mediante la introducción del concepto de Descomposición con Mínima Desviación, con lo cual obtenemos implementaciones m¿as eficientes, al reducir el n¿umero de iteraciones del Algoritmo Adaptado. Para resolver el problema de Norma Mínima hemos implementado un algoritmo de programación cuadrática semi-infinita utilizando una estrategia de build-up and build-down, introducida por Den Hertog (1997) para resolver programas lineales semi-infinitos, la cual usa un procedimiento de barrera logarítmica. Finalmente, se describen los resultados obtenidos por la implementación de los algoritmos anteriormente mencionados y se dan las conclusiones. ------------------------------------------------------------------------------------------------