Experimental Analysis of the Effectiveness of a Cyber-physical Robotic System to Assist Speech and Language Pathologists in High School

  1. Eldon Glen Caldwell Marín 1
  2. Miguel Cazorla Quevedo 2
  3. José María Cañas Plaza 3
  1. 1 Universidad de Costa Rica
    info

    Universidad de Costa Rica

    San José, Costa Rica

    ROR https://ror.org/02yzgww51

  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  3. 3 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

Zeitschrift:
NAER: Journal of New Approaches in Educational Research

ISSN: 2254-7339

Datum der Publikation: 2023

Ausgabe: 12

Nummer: 1

Seiten: 40-61

Art: Artikel

DOI: 10.7821/NAER.2023.1.1269 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: NAER: Journal of New Approaches in Educational Research

Ziele für nachhaltige Entwicklung

Zusammenfassung

This research focuses on whether the use of a cyber-physical robotic system (CPRS) to assist Speech and Language Pathologists (SLP) in a Special Education service is beneficial. The research method is based on a quasi-experiment with a 2k design and a two-way ANOVA, implemented with real high school students over 10 weeks. It was found that the use of this CPRT could improve, preliminarily and as an initial exploratory finding, therapeutic speech effectiveness up to 11.3 percentage points with a statistical confidence of 95%, when SLPs work with students with mild articulation disorder and a restricted time for therapy, but especially when the technology is used without time constraints. It is concluded that assistive CPRT could be a causal factor of improvement in specific treatments performed by SLPs, with the statistical evidence being sufficiently significant (95%) to maintain scientific and educational interest in this research line in the future.

Bibliographische Referenzen

  • American Speech Language Hearing Association. (2018). Aphasia Definitions. Retrieved from http://www.asha.org/public/speech/disorders/ChildSandL.htm
  • Begum, M., Serna, R. W. & Yanco, H. A. (2016). Are Robots Ready to Deliver Autism Interventions? A Comprehensive Review. International Journal of Social Robotics, 8(3), 157–181. https://doi.org/10.1007/s12369-016-0346-y
  • Cabibihan, J. J., Javed, H., Ang, M. & Aljunied, S. M. (2013). Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International Journal on Social Robotics, 5(4), 593–618.
  • Calderita, L. V., Bustos, P., Mejías, C., Fernandez, F. S., Viciana, R. & Bandera, A. (2015). Socially Interactive Robotic Assistant for Therapies. Revista Iberoamericana de Automática e Informática industrial, 1(1), 99–110. https://doi.org/10.1016/j.riai.2014.09.007
  • Caldwell, E., Cazorla, M., García, J., Azorin, J. & Zamora, M. (2017). An exploratory critical review on assistive robotics applied to autism spectrum: employability challenges. In 2017 International Symposium on Industrial Engineering and Operations Management (IEOM). (pp. 24–25). Retrieved from http://www.ieomsociety.org/ieomuk/
  • Caldwell, E., Morales, C., Solis, E., Cazorla, M. & Cañas, J. M. (2021). Designing a Cyber-physical Robotic Platform to assist Speech and Language Pathologists. Assistive Technology: the official journal of RESNA. https://doi.org/10.1080/10400435.2021.1934609
  • Chaminade, T., Fonseca, D., Rosset, D., Lutscher, E., Cheng, G. & Deruelle, C. (2012). FMRI study of young adults with autism interacting with a humanoid robot. In The 21st IEEE International Symposium on Robot and Human Interactive Communication. (pp. 380–385). https://doi.org/10.1109/ROMAN.2012.6343782
  • Choo, A. L., Smith, S. A. & Li, H. (2022). Prevalence, severity and risk factors for speech disorders in US children: the National Survey of Children's Health. Journal of Monolingual and Bilingual Speech, 4(1), 109–126. https://doi.org/10.1558/jmbs.20879
  • Collins, L. M., Dziak, J. J. & Li, R. (2009). Design of Experiments with Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs. Pychology Methods, 14(3), 202–224. https://doi.org/10.1037/a0015826
  • Costa, S., Lehmann, H., Dautenhahn, K., Robins, B. & Soares, F. (2015). Using a Humanoid Robot to Elicit Body Awareness and Appropriate Physical Interaction in Children with Autism. International Journal of Social Robotics, 7(4), 265–278. https://doi.org/10.1007/s12369-014-0250-2
  • Costescu, C. A., Vanderborght, B. & David, D. O. (2015). Reversal learning task in children with autism spectrum disorder: a robot-based approach. Journal of Autism Dev.Disorder, 45(11), 3715–3725. https://doi.org/10.1007/s10803-014-2319-z
  • Creswell, J. W. & Creswell, J. D. (2017). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (7th ed.). Sage Publications.
  • Diehl, J., Crowell, C. R., Villano, M., Wier, K., Tang, K. & Riek, L. (2014). Clinical applications of robots in autism spectrum disorder diagnosis and treatment: a comprehensive guide to autism. Springer International Publishing. Retrieved from https://doi.org/10.1007/978-1-4614-4788-7_14https://doi.org/10.1007/978-1-4614-4788-7_14
  • Estevez, D., Terrón-López, M. J., Velasco-Quintana, P. J., Rodríguez-Jiménez, R. M. & Álvarez-Manzano, V. (2021). A case study of a robot-assisted speech therapy for children with language disorders. Sustainability, 13(5), 2771. https://doi.org/10.3390/su13052771
  • Flagge, N. M. (2013). Trastornos del lenguaje: diagnóstico y tratamiento [Language disorders: diagnosis and treatment. Revista Neurología, 57(1), 85–94. https://doi.org/10.33588/rn.57S01.2013248
  • García-Vergara, S., Brown, L., Park, W., H. & Howard, A. M. (2014). Engaging Children in Play Therapy: The Coupling of Virtual Reality Games with Social Robotics.Springer https://doi.org/10.1007/978-3-642-45432-5_8
  • Glogowska, M. (2011). Paradigms, pragmatism and possibilities: mixed-methods research in speech and language therapy. International Journal of Language and Communication Disorders, 46(3), 251–260.
  • Gregor, W. (2016). Employment, Disabled People and Robots: What Is the Narrative in the Academic Literature and Canadian Newspapers? Societies Journal, 6(15), 2–16. https://doi.org/10.3390/soc6020015
  • Jackson, M. & Cox, D. R. (2013). The Principles of Experimental Design and Their Application in Sociology. Annual Review of Sociology, 39(1), 27–49. https://doi.org/10.1146/annurev-soc-071811-145443
  • Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R. & Scassellati, B. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism Dev. Disorders, 43(1), 1038–1049. https://doi.org/10.1007/s10803-012-1645-2
  • Kirk, R. E. (2014). Completely Randomized Factorial Design with Two Treatments, In Experimental Design, Procedures for the Behavioral Sciences.SAGE Publications
  • Kuehl, R. O. (2001). Design of Experiments: Statistical Principles for research design and analysis (2nd). Thompson Learning Ed
  • Lewison, G. & Carding, P. (2003). Evaluating UK research in speech and language therapy. International Journal of Language and Communication Disorders, 38(1), 65–84. https://doi.org/10.1080/13682820304815
  • Liu, L., Li, B., Chen, I.-M., Goh, T. & Sung, M. (2014). Interactive robots as social partner for communication care. In 2014 IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ICRA.2014.6907167
  • Marge, M., Espy-Wilson, C., Ward, N. G., Alwan, A., Artzi, Y., Bansal, M. & Yu, Z. (2022). Spoken language interaction with robots: Recommendations for future research. Computer Speech & Language, 71. https://doi.org/10.1016/j.csl.2021.101255
  • Medina-Varela, P. D. & López-Reyes, A. (2011). Análisis Crítico del Diseño Factorial 2k sobre casos aplicados. Scientia Et Technica, 17(47), 101–106.
  • Montgomery, A. A., Peters, T. J., Little, P. & L. (2003). Design, analysis and presentation of factorial randomised controlled trials. BMC Medical Research Methodology, 3(1), 26–42. https://doi.org/10.1186/1471-2288-3-26
  • Montgomery, D. C. (2002). Experiments Analysis and Design (2nd ed.). LIMUSA-Wiley Co.
  • Pakrasi, I. L. (2018). Towards expressive mobile robots (Unpublished master’s thesis). University of Illinois.
  • Pakrasi, I. L., Laviers, A. & Chakraborty, N. (2018). A design methodology for abstracting character archetypes onto robotic systems. In 5th International Conference on Movement and Computing (MOCO). (pp. 28–30). https://doi.org/10.1145/3212721.3212809
  • Pennington, R., Saadatzi, M. N., Welch, K. C. & Scott, R. (2014). Using robot-assisted instruction to teach students with intellectual disabilities to use personal narrative in text messages. Journal of Special Education Technology, 29(4), 4958–4972. https://doi.org/10.1177/016264341402900404
  • Pulido, G., Vara, H. D. L. & Salazar, R. (2012). Análisis y Diseño de Experimentos (3rd). McGraw-Hill
  • Pulido, J. C., González, J. C., Suárez-Mejías, C., Bandera, A., Bustos, P. & Fernández, F. (2017). Evaluating the child-robot interaction of the NAOTherapist platform in pediatric rehabilitation. International Journal of Social Robotics, 9(3), 343–358. https://doi.org/10.1007/s12369-017-0402-2
  • Raul, F. & Ahyea, A. (2016). Differentiating Language Difference and Language Disorder: Information for Teachers Working with English Language Learners in the Schools. Journal of Human Services: Training, Research and Practice, 2(1), 1–22.
  • Robles-Bykbaev, V., Velásquez-Angamarca, V., Mosquera-Cordero, K., Calle-López, D., Robles-Bykbaev, Y., Pinos-Vélez, E. & León-Pesántez, A. (2018). A proposal of a virtual robotic assistant and a rule-based expert system to carry out therapeutic exercises with children with Dyslalia. In 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM). (pp. 15–19). https://doi.org/10.1109/ETCM.2018.8580302
  • Scassellati, B., Admoni, H. & Mataric, M. (2012). Robots for use in autism research. Annual Rev. Biomed. Eng, 14(2), 275–294. https://doi.org/10.1146/annurev-bioeng-071811-150036
  • Scassellati, B. & Tsui, K. (2016). Co-Robots: Humans and Robots Operating as Partners. In Handbook of Science and Technology Convergence. (pp. 427–439). Springer International Publishing. https://doi.org/10.1007/978-3-319-07052-0_27
  • Seong, C., Jin, & Hyun, A. D. (2016). Socially Assistive Robotics in. Autism Spectrum Disorder. Hanyang Medical Review, 36(2), 17–26. https://doi.org/10.7599/hmr.2016.36.1.17
  • Smith, C., Williams, E. & Karen, B. (2017). A systematic scoping review of speech and language therapists public health practice for early language development. International Journal of Language and Communication Disorders, 52(4), 407–425. https://doi.org/10.1111/1460-6984.12299
  • Tapus, A., Peca, A., Aly, A., Pop, C., Jisa, L., Pintea, S., ... David, D. O. (2012). Children with autism social engagement in interaction with NAO, an imitative robot. Interact Stud, 13(3), 315–347. https://doi.org/10.1075/is.13.3.01tap
  • Vázquez-Villasuso, V. & Diaz-Monterrey, M. (2015). Hablando acerca de lenguaje. Revista Cubana de Tecnología de la Salud, 6(4), 121–125.
  • W F Harley, J. & Harley, W. F. (1968). The Effect of Hypnosis on Paired-Associative Learning. Journal of Personality, 36(6), 147–172. https://doi.org/10.1111/j.1467-6494.1968.tb01478.x