Climate change in two Mediterranean climate areas (Spain and Chile): evidences and projections

  1. Oliver Meseguer-Ruiz 1
  2. Jorge Olcina Cantos 2
  1. 1 Universidad de Tarapacá
    info

    Universidad de Tarapacá

    Arica, Chile

    ROR https://ror.org/04xe01d27

  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
Investigaciones Geográficas (España)

ISSN: 0213-4691 1989-9890

Año de publicación: 2023

Número: 79

Páginas: 9-32

Tipo: Artículo

DOI: 10.14198/INGEO.24093 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Investigaciones Geográficas (España)

Objetivos de desarrollo sostenible

Resumen

Climate change is the most important environmental problem facing humanity in this century. And it has become the great axis of public policies and private actions in developed societies. The effects of altering the planetary energy balance due to anthropogenic greenhouse gas emissions are already becoming evident in some regions of the planet. Among them, the evidence is already significant in the areas with a Mediterranean climate. This paper collects, as a review paper, the evidence and trends that are being recorded in two areas with a Mediterranean climate (the Spanish Mediterranean coast and the central sector of Chile) to assess the effect of the global warming process. The impact that the current climate change is having on the main elements of the climate and on specific environmental processes in both of these geographical spaces has been analysed. The study seeks to update, through an evaluative summary, the state of the issue of climate change in Mediterranean areas, indicating its future impact on elements of the natural environment and on the functioning of the societies that exist in these regions.

Referencias bibliográficas

  • Agencia Estatal De Meteorología. (2020). Proyecciones climáticas para el siglo XXI en España. In Agencia Estatal de Meteorología. http://www.aemet.es/es/serviciosclimaticos/cambio_climat
  • Agencia Estatal De Meteorología. (2022). Informe sobre el estado del clima en España 2021. Resumen ejecutivo. https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_ estudios/publicaciones/Informes_estado_clima/Resumen_ejecutivo_informe_clima_2021.pdf
  • Álvarez-Garreton, C., Boisier, J.P., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrology and Earth System Sciences, 25, 429-446. https://doi.org/10.5194/hess-25-429-2021
  • Amengual, A., Homar, V., Romero, R., Brooks, HE., Ramis, C., Gordaliza, M., & Alonso, S. (2014). Projections of heat waves with high impact on human health in Europe. Glob Planet Change, 119, 71- 84. https://doi.org/10.1016/j.gloplacha.2014.05.006
  • Barrera-Escoda, A., Gonçalves, M., Guerreiro, D., Cunillera, J., Baldasano, JM. (2014). Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Clim Change, 122(4), 567-582. https://doi.org/10.1007/s10584-013-1027-6
  • Barría, P., Chadwick, C., Ocampo-Melgar, A., Galleguillos, M., Garreaud, R., Díaz-Vasconcellos, R., Poblete, D., Rubio-Álvarez, E. & Poblete-Caballero, D. (2021). Water management or megadrought: what caused the Chilean Aculeo Lake drying? Regional Environmental Change, 21, 19. https://doi. org/10.1007/s10113-021-01750-w
  • Boisier, J. P., Rondanelli, R., Garreaud, R., & Muñoz, F. (2016). Natural and anthropogenic contributions to the Southeast Pacific precipitation decline and recent mega-drought in central Chile. Geophysical Research Letters, 43, 413-421. https://doi.org/10.1002/2015GL067265
  • Bozkurt, D., Rojas, M., Boisier, J.P., & Valdivieso, J. (2018). Projected hydroclimate changes over Andean basins in Central Chile from downscaled CMIP5 models under the low and high emission scenarios. Climatic Change, 150, 131-147. https://doi.org/10.1007/s10584-018-2246-7
  • Cardoso, S., Martinho, M.-A., Carvalho, A. C., & Rocha, A. (2020). Extreme precipitation events under climate change in the Iberian Peninsula. International Journal of Climatology, 40, 1255-1278. https:// doi.org/10.1002/joc.6269
  • Centro De Estudios Ambientales Del Mediterráneo. (2022). Mediterranean Sea Surface Temperature report (Autumn 2022). Meteorology and Climatology Area. http://www.ceam.es/SST
  • Centro de Estudios y Experimentación de Obras Públicas. (2021). Impacto del cambio climático en las precipitaciones máximas en España. Centro de Estudios Hidrográficos. https://ceh.cedex.es/web_ ceh_2018/Imp_CClimatico_Pmax.htm
  • Chazarra-Bernabé, A., Lorenzo Mariño, B., Rodríguez Ballesteros, C., & Botey Fullat, R. (2020). Análisis de las temperaturas en España en el periodo 1961-2018. Volumen 2. Series de temperaturas medias en España a partir de estaciones de referencia. Notas técnicas de AEMET, 31.2. Agencia Estatal de Meteorología. https://dx.doi.org/10.31978/666-20-004-X
  • Chazarra-Bernabé, A., Lorenzo Mariño, B., Romero Fresneda, R., & Moreno García, J.V. (2022). Evolución de los climas de Köppen en España en el periodo 1951-2020. Notas técnicas de AEMET, 37. Agencia Estatal de Meteorología. https://doi.org/10.31978/666-22-011-4
  • Ciscar, J.C., Feyen, L., Ibarreta, D., & Soria, A. (Coords.) (2018). Climate impacts in Europe Final report of the JRC PESETA III Project. European Commission. https://doi.org/10.2760/93257
  • Center for Climate and Resilience Research. (2015). La Megaseguía 2010–2015: Una lección para el futuro. Informe a la Nación. https://www.cr2.cl/informe-a-la-nacion-la-megasequia-2010-2015-una-leccionpara-el-futuro
  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.P., Iglesias, A., Lange, M.A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M.N., & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8, 972-980. https://doi.org/10.1038/s41558-018-0299-2
  • De Groot-Reichwein, M.A.M., van Lammeren, R.J.A., Goosen, H., Koekoek A., Bregt, A.K., & Vellinga, P. (2018). Urban heat indicator map for climate adaptation planning. Mitig Adapt Strateg Glob Change, 23, 169-185. https://doi.org/10.1007/s11027-015-9669-5
  • De Luis, M., Brunetti, M., Gonzalez-Hidalgo, J.C., Longares, L.A., & Martin-Vide, J. (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary Change, 74(1), 27-33. https://doi.org/10.1016/j.gloplacha.2010.06.006
  • Deng K., Ting M., Yang S., & Tan Y. (2018). Increased Frequency of Summer Extreme Heat Waves over Texas Area Tied to the Amplification of Pacific Zonal SST Gradient. J Climate 31, 5629-5647. https:// doi.org/10.1175/JCLI-D-17-0554.1
  • Efthymiadis, D., Goodess, C.M., & Jones, P.D. (2011). Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat Haz Earth Syst Sci, 11(8), 2199-2214. https://doi. org/10.5194/nhess-11-2199-2011
  • Ferreira, R.N. (2021). Cut-off low and extreme precipitation in eastern Spain: current and future climate. Atmosphere, 12(7), 835. http://dx.doi.org/10.3390/atmos12070835
  • Francis, F.A. & Vavrus, S.J. (2012). Evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 39, L06801. https://doi.org/10.1029/2012GL051000
  • Fuentealba, M., Bahamóndez, C., Sarricolea, P., Meseguer-Ruiz, O., & Latorre, C. (2021). The 2010–2020 'megadrought' drives reduction in lake surface area in the Andes of central Chile (32º 36ºS). Journal of Hydrology: Regional Studies, 38, 100952. https://doi.org/10.1016/j.ejrh.2021.100952
  • Fuenzalida, H., Aceituno, P., Falvey, M., Garreaud, R., Rojas, M., & Sánchez, R. (2007). Estudio de la variabilidad climática en Chile para el siglo XXI. Informe final, CONAMA, Ministerio del Medio Ambiente.
  • Garreaud, R.D. (2018). Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Climate Research, 74, 217-229. https://doi.org/10.3354/ cr01505
  • Garreaud, R.D., Alvarez-Garreton, C., Barichivich, J., Boisier, J.P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini, M. (2017). The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences, 21, 6301- 6327. https://doi.org/10.5194/hess-21-6307-2017
  • Garreaud, R.D., Boisier, J.P., Rondanelli, R., Montecinos, A., Sepúlveda, H.H., & Veloso-Aguila, D. (2020). The Central Chile Mega Drought (2010–2018). A climate dynamics perspective. International Journal of Climatology, 40, 421-439. https://doi.org/10.1002/joc.6219
  • González-Reyes, Á. (2016). Ocurrencia de eventos de sequías en la ciudad de Santiago de Chile desde mediados del siglo XIX. Revista de Geografía Norte Grande, 64, 21-32. http://dx.doi.org/10.4067/ S0718-34022016000200003
  • González, M., Lara, A., Urrutia, R., & Bosnich, J. (2011). Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42°S). Bosque, 32, 215-219. http://dx.doi.org/10.4067/S0717-92002011000300002
  • Greiving, S. (Coord.) (2011). ESPON Climate Climate Change and Territorial Effects on Regions and Local Economies. Final report.
  • Ham, Y.G. & Na, H.Y. (2017). Marginal Sea Surface Temperature Variation as a Pre-Cursor of Heat Waves over the Korean Peninsula. Asia-Pac J Atmos Sci, 53(4), 445-455. https://doi.org/10.1007/s13143-017- 0047-y
  • Hatfield, JL. & Prueger, JH. (2015). Temperature extremes: effect on plant growth and development. Weather Clim Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
  • Hertig, E., Seubert, S., & Jacobeit, J. (2010). Temperature extremes in the Mediterranean area: Trends in the past and assessments for the future. Nat Haz Earth Syst Sci, 10(10), 2039-2050. https://doi. org/10.5194/nhess-10-2039-2010
  • Intergovernmental Panel On Climate Change. (2013). Climate change 2013: the physical science basis. In T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P.M. Midgley (Eds), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. https://doi.org/10.1017/ CBO9781107415324
  • Intergovernmental Panel On Climate Change. (2018). Special Report on Global Warming of 1.5ºC. Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate Change (AR5). https://www.ipcc.ch/sr15/
  • Intergovernmental Panel On Climate Change. (2019). Special Report on the Ocean and Cryosphere in a Changing Climate. In H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (Eds.). https://www.ipcc.ch/srocc/
  • Intergovernmental Panel On Climate Change. (2019). Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Contribution of Working Group I to the Fifth Assesment Report of the Intergovernmental Panel on Climate change(AR5).https://www.ipcc.ch/report/srccl/
  • Intergovernmental Panel On Climate Change. (2021). Climate Change 2021. The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
  • Intergovernmental Panel On Climate Change. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/
  • Jones, M.W., Abatzoglou, J.T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A.J.P., Burton, Ch., Betts, R.A., van der Werf, G.R., Sitch, S., Canadell, J.G., Santín, C., Kolden, C., Doerr, S.H., & Le Quéré, C. (2022). Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 60, e2020RG000726. https://doi.org/10.1029/2020RG000726
  • Katz, R.W. & Brown, B.G. (1992). Extreme events in a changing climate: variability is more important than averages. Climatic Change, 21, 289-302. https://doi.org/10.1007/BF00139728
  • Keellings, D. & Waylen, P. (2012). The stochastic properties of high daily maximum temperatures applying crossing theory to modelling high-temperature event variables. Theor Appl Climatol, 108, 579-590. https://doi.org/10.1007/s00704-011-0553-2
  • Kulp, S.A. & Strauss, B.H. (2019). New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications 10: 4844, 12. https://doi.org/10.1038/s41467-019- 12808-z
  • Lara, A., Zamorano, C., Miranda, A., González, M., & Reyes, R. (2016). Bosques Nativos. In Informe País. Estado del Medio Ambiente en Chile. Comparación 1999-2015 (pp. 167-210). Universidad de Chile, Instituto de Asuntos Públicos, Centro de Análisis de Políticas Públicas. https://portaluchile.uchile.cl/ publicaciones/129607/informe-pais-estado-del-medio-ambiente-en-chile-1999-2015
  • Levin, K. (2019). Six ways the Climate Change over de past decade. World Resources Institute. https://www. wri.org/insights/6-ways-climate-changed-over-past-decade
  • Losada, I., Izaguirre, C., & Diaz, P. (2014). Cambio climático en la costa española. Oficina Española de Cambio Climático, Ministerio de Agricultura, Alimentación y Medio Ambiente.
  • Llasat, M.C., del Moral, A., Cortès, M., & Rigo, T. (2021). Convective precipitation trends in the Spanish Mediterranean region. Atmospheric Research, 257, 105581. https://doi.org/10.1016/j. atmosres.2021.105581
  • Martín León, F. (2018). Analizando el concepto de “noche tropical”. Revista del Aficionado a la Meteorología. https://www.tiempo.com/ram/449791/analizando-el-concepto-de-noche-tropical/
  • Martín León, F. (2019). Los inviernos serán más cálidos, pero también con irrupciones más frías. Revista del Aficionado a la Meteorología. https://www.tiempo.com/ram/507091/los-inviernos-seran-mascalidos-pero-tambien-con-irrupciones-mas-frias/
  • Martin-Vide, J. & Lopez-Bustins, J.A. (2006). The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26, 1455-1475. https://doi.org/10.1002/ joc.1388
  • Martinez-Harms, M.J., Caceres, H., Biggs, D., & Possingham, H.P. (2017). After Chile’s fires, reforest private land. Science, 356, 147-148. http://doi.org/10.1126/science.aan0701 McNamara, I., Nauditt, A., Zambrano-Bigiarini, M., Ribbe, L., & Hann, H. (2021). Modelling water resources for planning irrigation development in drought-prone southern Chile. International Journal of Water Resources Development, 37, 793-818. https://doi.org/10.1080/07900627.2020.1768828
  • MedECC (2020). Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report (Version 1). Zenodo. http://doi.org/10.5281/ zenodo.4768833
  • Merino, A., Fernández-Vaquero, M., López, L., Fernández-González, S., Hermida, L., Sánchez, J. L., & García-Ortega, E. (2016). Large-scale patterns of daily precipitation extremes on the Iberian Peninsula. International Journal of Climatology, 36, 3873-3891. https://doi.org/10.1002/joc.4601
  • Meseguer-Ruiz, O., Corvacho, O., Tapia Tosetti, A., López-Cepeda, J.F., & Sarricolea, P. (2019). Analysis of the Trends in Observed Extreme Temperatures in Mainland Chile Between 1966 and 2015 Using Different Indices. Pure and Applied Geophysics, 176, 5141-5160. https://doi.org/10.1007/s00024-019- 02234-z
  • Michaelides, S., Karacostas, T., Sánchez, J L., Retalis, A., Pytharoulis, I., Homar, V., Romero, R., Zanis, P., Giannakopoulos, C., Bühl, J., Ansmann, A., Merino, A., Melcón, P., Lagouvardos, K., Kotroni, V., Bruggeman, A., López-Moreno, JI., Berthet, C., Katragkou, E., Tymvios, F., Hadjimitsis, DG., Mamouri, RE., & Nisantzi, A. (2018). Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos Res, 208, 4-44. https://doi.org/10.1016/j.atmosres.2017.11.022
  • Miró, J.J., Estrela, M.J., & Millán, M. (2006). Summer temperature trends in mediterranean area (Valencia region). Int J Climatol, 26(8), 1051-1073. https://doi.org/10.1002/joc.1297
  • Miró, J. (2014). Downscaling estadístico de series climáticas mediantes redes neuronales: reconstrucción en alta resolución de la temperatura diaria para la Comunidad Valenciana. Interpolación espacial y análisis de tendencias (1948-2011) [Doctoral thesis, Universidad de Alicante]. Repositorio Institucional de la Universidad de Alicante. https://rua.ua.es/dspace/handle/10045/36538
  • Miró, J.J., Estrela, M.J., Olcina-Cantos, J., & Martin-Vide, J. (2021). Future Projection of Precipitation Changes in the Júcar and Segura River Basins (Iberian Peninsula) by CMIP5 GCMs Local Downscaling. Atmosphere, 12, 879. https://doi.org/10.3390/atmos12070879
  • Miró, J.J., Lemus-Canovas, M., Serrano Notivoli, R., Olcina Cantos, J., Estrela, M.J., Martín-Vide, J., Sarricolea, P., & Meseguer-Ruiz, O. (2022). A component-based approximation for trend detection of intense rainfall in the Spanish Mediterranean coast. Weather and Climate Extremes, 38, 100513. https://doi.org/10.1016/j.wace.2022.100513
  • Muñoz, A.A., Klock-Barría, K., Alvarez-Garreton, C., Aguilera-Betti, I., González-Reyes, Á., Lastra, J.A., Chávez, R.O., Barría, P., Christie, D., Rojas-Badilla, M., & LeQuesne, C. (2020). Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water, 12, 648. https:// doi.org/10.3390/w12030648
  • Muñoz, C., Schultz, D., & Vaughan, G. (2020). A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows. Journal of Climate, 33(6), 2201-2222. https://doi.org/10.1175/ JCLI-D-19-0497.1
  • Oertel, M., Meza, F.J., & Gironás, J. (2020). Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. Hydrological Processes, 34, 159- 174. https://doi.org/10.1002/hyp.13596
  • Olcina Cantos, J. (2017). Incremento de episodios de inundación por lluvias de intensidad horaria en el sector central del litoral mediterráneo español: análisis de tendencias en Alicante, Rev Semata, 29, 143-163.
  • Olcina Cantos, J. & Miró Pérez, J. (2017). Actividad turística y cambio climático en la Comunidad Valenciana. Universidad de Alicante, Instituto Universitario de Investigaciones Turísticas y Agència Valenciana del Turisme. http://dx.doi.org/10.14198/2017-Actividad-Turistica-ComValenciana
  • Olcina Cantos, J., Serrano-Notivoli R., Miró J., & Meseguer-Ruiz O. (2019). Tropical nights on the Spanish Mediterranean coast, 1950-2014. Climate Research, 78(3), 225-236. https://doi.org/10.3354/cr01569
  • Oria Iriarte, P. (2021). ¿Está aumentando la frecuencia o la intensidad de las precipitaciones extremas en el Mediterráneo?. Calendario Meteorológico 2021. AEMET. https://aemetblog.es/2021/05/02/estaaumentando-la-frecuencia-o-la-intensidad-de-las-precipitaciones-extremas-en-el-mediterraneo/
  • Pastor, F., Valiente, J.A., & Palau, J.L. (2017). Sea surface temperature in the Mediterranean climatology, trends and spatial patterns. Poster presented in 10th Hymex Workshop in Barcelona (4-7 July 2017). http://www.ceam.es/VERSUS/publications.html
  • Peña-Guerrero, M.D., Nauditt, A., Muñoz-Robles, C., Ribbe, L., & Meza, F. (2020). Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrological Sciences Journal, 65, 1005-1021. https://doi.org/10.1080/02626667.2020.1711911
  • Perkins-Kirkpatrick, S.E. & Gibson, P.B. (2017). Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep, 7, 12256. https://doi.org/10.1038/s41598-017- 12520-2
  • Piticar, A. (2018). Changes in heat waves in Chile. Global and Planetary Change, 169, 234-246. https://doi. org/10.1016/j.gloplacha.2018.08.007
  • Purich, A., Cowan, T., Cai, W., van Rensch, P., Uotila, P., Pezza, A., Boschat, G., & Perkins, S. (2014). Atmospheric and Oceanic Conditions Associated with Southern Australian Heat Waves: A CMIP5 Analysis. J Climate, 27, 7807-7829. https://doi.org/10.1175/JCLI-D-14-00098.1
  • Reynhout, S.A., Sagredo, E.A., Kaplan, M.R., Aravena, J.C., Martini, M.A., Moreno, P.I., Rojas, M., Schwartz, R., & Schaefer, J.M. (2019). Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quaternary Science Reviews, 220, 178-187. https://doi.org/10.1016/j.quascirev.2019.05.029
  • Romero Fresneda, R., Moreno García, J.V., Martínez Núñez, L., Huarte Ituláin, M.T., Rodríguez Ballesteros, C., & Botey Fullat, R. (2020). Comportamiento de las precipitaciones en España y Periodos de sequía (Periodo 1961-2018). Nota técnica 32 de AEMET. Agencia Estatal de Meteorología. https://dx.doi. org/10.31978/666-20-006-0
  • Royé, D. (2017). The effects of hot nights on mortality in Barcelona, Spain. Int J Biometeorol, 61, 2127- 2140. https://doi.org/10.1007/s00484-017-1416-z
  • Royé, D., & Martí Ezpeleta, A. (2015). Análisis de las noches tropicales en la fachada atlántica de la Península Ibérica. Una propuesta metodológica. B. Asoc Geogr Esp, 69, 351-368. https://doi. org/10.21138/bage.1900
  • Royé, D., Sera, F,, Tobías, A., Lowe, R., Gasparrini, A., Pascal, M., de’Donato, F., Nunes, B., & Teixeira, J.P. (2021). Effects of Hot Nights on Mortality in Southern Europe. Epidemiology, 32(4), 487-498. https:// doi.org/10.1097/EDE.0000000000001359
  • Sanchez-Lorenzo, A., Pereira, P., Lopez-Bustins, J.A., & Lolis, C.J. (2011). Summer night-time temperature trends on the Iberian Peninsula and their connection with large-scale atmospheric circulation patterns. Int J Climatol, 32(9), 1326-1335. https://doi.org/10.1002/joc.2354
  • Santos, J.A., Pfahl, S., Pinto, J.G., & Wernli, H. (2015). Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective. Tellus A Dyn Meteorol Oceanogr, 67(1), 26032. https://doi.org/10.3402/ tellusa.v67.26032
  • Sanz, M.J., & Galán, E. (2021). Impactos y riesgos derivados del cambio climático en España. Ministerio para la Transición Ecológica y el Reto Demográfico. https://adaptecca.es/sites/default/files/documentos/ impactosyriesgosccespanawebfinal_tcm30-518210_0.pdf
  • Sarricolea, P., Herrera-Ossandon, M., & Meseguer-Ruiz, O. (2017). Climatic regionalisation of continental Chile. Journal of Maps, 13(2), 66-73. https://doi.org/10.1080/17445647.2016.1259592
  • Saurí, D., Olcina, J., March, H., Martín-Vide, J., Vera, F., Padilla, E., & Serra-Llobet, A. (2011). Case Study Mediterranean Coast of Spain. In ESPON Climate: Climate Change and Territorial Effects on Regions and Local Economies. Applied research project 2013/1/4. Final Report. Annex 4. https://www.espon. eu/sites/default/files/attachments/Final%20Report%20Case%20Study%20Spain.pdf
  • Serrano-Notivoli, R., Beguería, S., Saz, M. A., & De Luis, M. (2018). Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology, 38, 4211-4224. https:// doi.org/10.1002/joc.5562
  • Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., Vuille, M., Fuentealba, M., & de Luis, M. (2021). Hydroclimatic variability in Santiago (Chile) since the 16th century. International Journal of Climatology, 41, E2015-E2030. https://doi.org/10.1002/joc.6828 Tamayo Cardona, J., & Núñez Mora, J.A. (2020). Precipitaciones intensas en la Comunidad Valenciana. Análisis, sistemas de predicción y perspectivas ante el cambio climático. In I. López Ortíz, J. Melgarejo Moreno, & P. Fernández Aracil (Eds.), Riesgo de inundación es España: análisis y soluciones para la generación de territorios resilientes (pp. 49-52). Publicaciones de la Universidad de Alicante.
  • Teichmann, C., Bülow, K., Otto, J., Pfeifer, S., Rechid, D., Sieck, K., & Jacob, D. (2018). Avoiding Extremes: Benefits of Staying below +1.5ºC Compared to +2.0º C and +3.0ºC Global Warming. AtmosphereBasel, 9(4), 115. https://doi.org/10.3390/atmos9040115
  • Tian, J., Liu, J., Wang, J., Li, C., Nie, H., & Yu, F. (2017). Trend analysis of temperature and precipitation extremes in major grain producing area of China. Int J Climatol, 37(2), 672-687. https://doi. org/10.1002/joc.4732
  • Úbeda, X., Mataix-Solera, J., Francos, M., & Farguell, J. (2022). Incendios forestales en España y alteraciones de su régimen en las últimas décadas. Geografia, Riscos e ProteÇao Civil. Homenaje ao Professor Doutor Luciano Lourenço, 2, 147-61. https://doi.org/10.34037/978-989-9053-06-9_1.2_11
  • Urritia-Jalabert, R., González, M.E., González-Reyes, Á., Lara, A., & Garreaud, R. (2018). Climate variability and forest fires in central and south-central Chile. Ecosphere, 9, e02171. https://doi. org/10.1002/ecs2.2171
  • Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W.S., & Bolivar Cáceres, C. (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research Atmospheres, 120, 3745-3757. https://doi.org/10.1002/2015JD023126
  • Wang, L., Wang, WJ., Wu, Z., Du, H., Shen, X., & Ma, S. (2018). Spatial and temporal variations of summer hot days and heat waves and their relationships with large-scale atmospheric circulations across Northeast China. Int J Climatol, 38(15), 5633-5645. https://doi.org/10.1002/joc.5768
  • World Meteorological Organization. (2022). WMO Provisional State of the Global Climate 2022. https:// library.wmo.int/index.php?lvl=notice_display&id=22156#.Y7RsfxXMKUm
  • Xoplaki, E., Luterbacher, J., & González-Rouco, J.F. (2006). Mediterranean summer temperature  and winter precipitation, large-scale dynamics, trends. Nuovo Cimento C 29(1), 45-54.
  • Ye, L., Yang, G., Van Ranst, E., & Tang, H. (2013). Time-series modelling and prediction of global monthly absolute temperature for environmental decision making. Adv Atmos Sci 30, 382-396. https://doi. org/10.1007/s00376-012-1252-3
  • Zittis, G., Hadjinicolaou, P., Fnais, M., & Lelieveld, J. (2016). Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg Environ Change, 16, 1863-1876. https://doi. org/10.1007/s10113-014-0753-2
  • Zittis, G., Bruggeman, A., & Lelieveld, J. (2021). Revisiting future extreme precipitation trends in the Mediterranean, Weather and Climate Extremes, 34, 100380. https://doi.org/10.1016/j.wace.2021.100380