Performance of pervious concrete containing combined recycled aggregates

  1. Ulloa-Mayorga, Vivian Andrea
  2. Uribe-Garcés, Manuel Antonio
  3. Paz-Gómez, Diego Paúl
  4. Alvarado, Yezid Alexander
  5. Torres, Benjamín
  6. Gasch, Isabel
Journal:
Ingeniería e Investigación

ISSN: 0120-5609

Year of publication: 2018

Volume: 38

Issue: 2

Pages: 34-41

Type: Article

DOI: 10.15446/ING.INVESTIG.V38N2.67491 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Ingeniería e Investigación

Sustainable development goals

Abstract

This study evaluates the influence of incorporating two different types of recycled aggregates (RA) from construction and demolition waste (CDW), brick ceramic aggregate (RA1) and crushed concrete aggregate (RA2), from the city of Bogotá, on the performance of pervious concrete under compression and flexural strength. The substitution of RA in the production of pervious concrete is outlined, taking into account five substitution levels. For the pervious concrete mixes, aggregates of sizes retained in a sieve of 1/2” and 3/8” were used. The pervious concrete mixes were submitted, 28 days later, to density tests, void content, compression and flexural strength and permeability. Such pervious concrete with RA reaches compression and flexural strength of up to 5,79 MPa and 2,14 MPa, respectively, which are within the allowed range by the ACI, reaching a permeability of 24,79 mm/s, value that is superior to the common characteristics of pervious concrete

Bibliographic References

  • Aamer Rafique Bhutta, M., Hasanah, N., Farhayu, N., Hussin, M. W., Tahir, M. bin M., & Mirza, J. (2013). Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials, 47, 1243– 1248. DOI: 10.1016/j.conbuildmat.2013.06.022
  • ACI Committee 522. ACI 522R-10 Report on Pervious Concrete (2010). Farmington Hills, MI.
  • AENOR. Norma UNE-EN 933-11:2009. Ensayos para determinar las propiedades geométricas de los áridos. Parte 11: Ensayo de clasificación de los componentes de los áridos gruesos reciclados. (2009). AENOR.
  • ASTM International. Método de Ensayo Normalizado para la Determinación de la Resistencia a la Flexión del Concreto (Utilizando Viga Simple con Carga en los Tercios del Claro). ASTM C78/C78M-02 (2002).
  • ASTM International. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM C127-07 (2007). DOI: 10.1520/C0127-15
  • ASTM International. Standard Test Method for Bulk Density (“ Unit Weight ”) and Voids in Aggregate. ASTM C29/C29M- 09 (2009). DOI: 10.1520/C0029_C0029M-17A
  • ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM C39/C39M-09 (2009). DOI: 10.1520/C0039_C0039M-09
  • ASTM International. Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM C131-09 (2009).
  • ASTM International. Standard Test Method for Density and Void Content of Hardened Pervious Concrete. ASTM C1754-C1754-12 (2012). DOI: 10.1520/C1754_C1754M-12
  • Barnhouse, P. W., & Srubar, W. V. (2016). Material characterization and hydraulic conductivity modeling of macroporous recycled-aggregate pervious concrete. Construction and Building Materials, 110, 89–97. DOI: 10.1016/j.conbuildmat.2016.02.014
  • Barra de Oliveira, M. (1997). Estudio de la durabilidad del hormigón de árido reciclado en su aplicación como hormigón armado. Universidad Politécnica de Catalunya.
  • Chindaprasirt, P., Hatanaka, S., Chareerat, T., Mishima, N., & Yuasa, Y. (2008). Cement paste characteristics and porous concrete properties. Construction and Building Materials, 22(5), 894–901. DOI: 10.1016/J.CONBUILDMAT.2006.12.007
  • Ćosić, K., Korat, L., Ducman, V., & Netinger, I. (2015). Influenceof aggregate type and size on properties of pervious concrete. Construction and Building Materials, 78, 69–76.
  • DOI: 10.1016/j.conbuildmat.2014.12.073
  • DNER/DrDTc (IPR). Agregado graúdo - avaliação da resistência mecânica pelo método dos 10% de finos. DNER-ME 096/98, Norma rodoviária (1998).
  • Güneyisi, E., Gesoğlu, M., Kareem, Q., & Ipek, S. (2016). Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete. Materials and Structures, 49, 521–536. DOI: 10.1617/s11527-014-0517-y
  • Lasso Aguirre, A. L., & Misle Rodríguez, R. (2012). Evaluación técnica, económica e institucional de la gestión de residuos de construcción y demolición en Bogotá D.C. Pontificia Universidad Javeriana de Bogotá. Retrieved from https://repository.javeriana.edu.co/handle/10554/15570
  • Montoya-Villarreal, S. P., Ortega-Acosta, A. I., Orozco-Gutiérrez, J. C., González, C. P., Forero-Díaz, D. A., Casas-Camargo, H. L., Smaper-Suggrañes, I. (2016). Bogotá D.C., hacia una nueva cultura en la gestión integral de los residuos de construcción y demolición coordinación técnica general. Bogotá D.C., Colombia. Retrieved from http://ent.cat/wp-content/uploads/2016/03/Publicacion-Bogota-SDA.pdf
  • Moujir, Y. F., & Castañeda, L. F. (2014). Diseño y Aplicación de Concreto Poroso para Pavimentos. Cali, Colombia. Retrieved from http://vitela.javerianacali.edu.co/bitstream/handle/11522/3082/Diseño_aplicacion_concreto.pdf?sequence=1
  • Solminihac, H. De, Videla, C., Fernández, B., & Castro, J. (2007). Porous concrete mixtures for pervious urban pavements. Materiales de Construcción, 57(287), 23–36.
  • DOI: 10.3989/mc.2007.v57.i287.54
  • Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix Design for Pervious Recycled Aggregate Concrete. International Journal of Concrete Structures and Materials, 6(4), 239–246. DOI: 10.1007/s40069-012- 0024-x
  • Wang, K., Schaefer, V. R., Kevern, J. T., & Suleiman, M. T. (2006). Development of Mix Proportion for Functional and Durable Pervious Concrete. In NRMCA Concrete Technology Forum: Focus on Pervious Concrete (pp. 1–12). Nashville, TN.
  • Zaetang, Y., Sata, V., Wongsa, A., & Chindaprasirt, P. (2016). Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials, 111, 15–21.
  • DOI:10.1016/J.CONBUILDMAT.2016.02.060