Razonamiento configural como coordinación de procesos de visualización
ISSN: 0212-4521, 2174-6486
Año de publicación: 2010
Volumen: 28
Número: 3
Páginas: 327-340
Tipo: Artículo
Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas
Referencias bibliográficas
- BALACHEFF, N. (1988). Aspects of proof in pupils' practice of school mathematics, en Pimm, D. (ed.). Mathematics, teachers and children, pp. 216-235. Londres: Hodder&St.
- BISHOP, A.J. (1983). Space and geometry, en Lesh, R. y Landau, M. (eds.). Acquisition of mathematics concepts and processes, pp. 125-203. Nueva York: Academic Press.
- BISHOP, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1), pp. 7-16.
- DEL GRANDE, J. (1990). Spatial sense. Arithmetic Teacher, 37(6), pp. 14-20.
- DUVAL R. (1993). Argumenter, démontrer, expliquer: continuité ou rupture cognitive?. Petit x, 3. Grenoble, Francia: Irem.
- DUVAL, R. (1995). Geometrical Pictures: Kinds of representation and specific processes, en Sutherland, R. y Mason, J. (eds.). Exploiting mental imagery with computers in mathematical education, pp. 142-157. Berlín, Germany: Springer.
- DUVAL R. (1998). Geometry from a cognitive point of view, en Mammana, C. y Villani, V. (eds.). Perspective on the Teaching of the Geometry for the 21st Century, pp. 37-52. Dordrecht, Netherland: Kluwer Academic Publishers.
- DUVAL, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof, en Boero, P. (ed.). Theorems in School. From History, Epistemology and Cognition to Classroom Practice, pp.137-162. Róterdam, Netherland: Sense Publishers.
- ELIA, I., GAGATSIS, A., DELIYIANNI, E., MONOYIOU, A. y MICHAEL, S. (2009) A Structural Model of Primary School Students' Operative Aprehension of Geometrical Figures, en Tzekaki, M., Kaldrimidou, M. y Sakonidis, H. (eds.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, 3, pp. 1-8. Thessaloniki, Greece: PME.
- FISCHBEIN, E. (1987). Intuition in science and mathematics: an educational approach. Dordrech, Netherland: Reidel.
- FISCHBEIN, E (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), pp. 139-162.
- GUTIÉRREZ, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. Proceedings of the 20th PME Conference, 1, pp. 3-19. Valencia, España.
- HAREL, G. y SOWDER, L. (1998). Students' proof schemes: Results from exploratory studies, en A.H. Schoenfeld, J. Kaput & E. Dubinsky (eds.). Research in collegiate mathematics education, 3, pp. 234-283. Providence, USA: American Mathematical Society.
- HERSHKOWITZ, R.(1990). Psycological aspects of learning Geometry, en P. Nesher y J. Kilpatrick (eds.). Mathematics and cognition, pp. 70-95. Cambridge, England: Cambridge University Press.
- HERSHKOWITZ, R., PARZYSZ, B. y VAN DERMOLEN, J. (1996). Space and Shape, en Bishop and others, A.J. (eds.). International handbook of Mathematics Education, pp. 161-204 (1). Dordrecht, Netherland: Kluwer Academic Plublishers.
- IBÁÑES, M. J. (2001). Aspectos cognitivos del aprendizaje de la demostración matemática en alumnos de primer curso de bachillerato. PhD dissertation. Valladolid, Spain: Universidad de Valladolid.
- KOLEZA, E. y KABANI, E. (2006). The use of reasoning in the resolution of geometry. Nordic Studies in Mathematics Education, 11(3), pp. 31-56.
- KRUTESKII, V. A. (1976). The psychology of mathematical habilities in schoolchildren. Chicago, EE.UU: The University of Chicago Press.
- MESQUITA, A. (1989). L' influence des aspects figuratifs dans l'argumentation des élèves en géométrie: Elements pour une typologie. Thèse de Doctorat. Strabourg, France: Université Louis Pasteur.
- PADILLA, V. (1990). L'influence d'une acquisition de traitements purement figuraux sur l'apprentissage des mathématiques. Thèse de Doctorat. Strasbourg, France: Université Louis Pasteur.
- PRESMEG, N.C. (1986a). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17(3), pp. 297-311.
- PRESMEG, N. C. (1986b). Visualisation in high school mathematics. For the Learning of Mathematics, 6(3), pp. 42-46.
- PRESMEG, N. (2006). Research on Visualization in Learning and Teaching Mathematics, en Gutierrez, A. y Boero, P. (eds.). Handbook of Research on the Psychology of Mathematics Education, pp. 205-235. Róterdam/Taipéi: Sense Publishers
- SOUCY, S. y MARTÍN, T. (2006). Going beyond the rules: making sense of Proof, en Alatorre, S., Cortina, J.L., Sáiz, M. y Méndez, A. (eds.). Proceedings of the Twenty Eight Annual Meeting of the North American Chapter of the Internacional group for the Psychology of Mathematics Education, pp. 235-236. Mérida, México: Universidad Pedagógica Nacional.
- TORREGROSA, G. y QUESADA, H. (2007). Coordinación de procesos cognitivos en Geometría. Relime, 10(2), 275-300.
- TORREGROSA, G. y QUESADA, H. (2008). The Coordination of Cognitive Processes in Solving Geometric Problems Requiring Formal Proof, en Figueras, O. y Sepúlveda, A. (eds.). Proceedings of the Joint Meeting of the 32nd Conference of the International Group for the Psychology of Mathematics Education, and the XX North American Chapter, 4, pp. 321-328. Morelia, México: Cinvestav-UMNSH.
- ZAZKIS, R., DUBINSKY, E. y DAUTERMANN, J. (1996). Coordinating visual and analitic strategies: a students' understanding of the group D4. Journal for Research in Mathematic Education, 27(4), pp. 435-457.
- ZIMMERMANN, W. CUNNINGHAM S. (1991). Visualization in teaching and learning mathematics. Washington DC., EE.UU.: The Mathematical Association of America Inc.