A New Measurement of Scientific CreativityThe Study of its Psychometric Properties

  1. María-Rosario Bermejo 1
  2. María-José Ruiz-Melero 1
  3. Javier Esparza 1
  4. Mercedes Ferrando 1
  5. Rosa Pons 1
  1. 1 Murcia University (Spain)
Journal:
Anales de psicología

ISSN: 0212-9728 1695-2294

Year of publication: 2016

Volume: 32

Issue: 3

Pages: 652-661

Type: Article

DOI: 10.6018/ANALESPS.32.3.259411 DIALNET GOOGLE SCHOLAR

More publications in: Anales de psicología

Sustainable development goals

Abstract

The purpose of this paper is to study the psychometric proprieties of a new test aimed to measure scientific creativity, the Creative Scientific Ability Test (C-SAT, Sak & Ayas, 2011). The test has been validated in different Turkish samples, showing an adequate reliability (α = .87, Ayas & Sak, 2014). The test is composed of five tasks that measure scientific creativity in different areas of knowledge: Biology, Chemistry, Physics, Ecology and an interdisciplinary task. For each task, a Creative Quotient (CQ) is calculated as a combination of Fluency (number of valid answers) and Flexibility (different approaches in the solution). The test also allows us to differentiate three scientific-creative thinking processes (hypothesis generation, hypothesis evaluation and evidence verification). 344 students from Compulsory Secondary Education took part in this study. The results point out a good reliability (α = .705) and an adequate inter-rater agreement (ranging from average ICC .80 to .98). In addition, the unifactorial structure of the test was verified using CFA, which agree with the authors’ previous results (Ayas & Sak, 2014; Sak & Ayas, 2013), even when a structure of three creative process can be considered.

Bibliographic References

  • Albert, R. S. (1996). Some reasons why childhood creativity often fails to make it past puberty into the real world. New Directions for Child and Adolescent Development, 1996(72), 43-56.
  • Arbuckle, J.L. (2012). IBM SPSS Amos 21 User's Guide. IBM
  • Ayas, M. B., & Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the Creative Scientific Ability Test. Thinking Skills and Creativity, 13, 195-205.
  • Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11(2), 173-177.
  • Baer, J. (1999). Domains of creativity. En M. Runco, & S. Pritzker, (Ed.). Encyclopedia of Creativity (pp. 591-596). New York: Academic Press.
  • Brown, T. (2006). Confirmatory factor analysis for applied research. Nueva York: The Guilford Press.
  • Castelló, A., & Batlle, C. (1998). Aspectos teóricos e instrumentales en la identificación del alumnado superdotado y talentoso. Propuesta de un protocolo. FAISCA, 6, 26-66.
  • Cropley, A. J. (2005). Creativity and problem-solving: Implications for classroom assessment. British Psychological Society.
  • Cropley, D., & Cropley, A. (2008). Elements of a universal aesthetic of creativity. Psychology of Aesthetics, Creativity, and the Arts, 2(3), 155.
  • Dubé, J. E. (2008). Evaluación del acuerdo interjueces en investigación clínica breve introducción a la confiabilidad interjueces. Revista argentina de clínica psicológica, 17, 75-80.
  • Dunbar, K. (1999). Science. En M.A. Runco & S.R. Pritzker (Eds.). Encyclopedia of creativity (Vol. II) (pp. 525-531). New York: Elsevier.
  • Duschl, R. A. (1997). Renovar la enseñanza de las ciencias: importancia de las teorías y su desarrollo. Madrid: Narcea.
  • Einstein, A. & Infield, L. (1938). The Evolution of Physics. New York: Simon & Schuster.Esparza, J., Ferrando, M., Ferrándiz, C., & Prieto, M.D. (2015). Índice de Creatividad Científica (IC): Originalidad y Calidad. I Jornadas Internacionales de Doctorado, Universidad de Murcia. Comunicación Oral.
  • Esparza, J., Ferrando, M., Ferrándiz, C., & Prieto, M.D. (2015). Índice de Creatividad Científica (IC): Originalidad y Calidad. I Jornadas Internacionales de Doctorado, Universidad de Murcia. Comunicación Oral.
  • Esparza, J., Ruiz, M.J., Ferrando, M., & Sainz, M. (2015). Creatividad científica y alta habilidad: diferencias de género y nivel educativo. Aula. Revista de Pedagogía de la Universidad de Salamanca, 21, 49-62.
  • Frederiksen, N., & Ward, W. C. (1978). Measures for the study of creativity in scientific problem-solving. Applied Psychological Measurement, 2(1), 1-24.
  • Guilford, J. P. (1967). The nature of human intelligence. New York: MacGraw-Hill.
  • Haller, C. S., Courvoisier, D. S., & Cropley, D. H. (2011). Perhaps there is accounting for taste: Evaluating the creativity of products. Creativity Research Journal, 23(2), 99-109.
  • Han, K. S. (2003). Domain Specificity of Creativity in Young Children: How Quantitative and Qualitative Data Support It. The Journal of Creative Behavior, 37(2), 117-142.
  • Hambleton, R. K., Merenda, P., & Spielberger, C. (Eds.) (2005). Adapting educational and psychological tests for cross-cultural assessment. Hillsdale, NJ: Lawrence S. Erlbaum Publishers.
  • Hennessey, B. A., & Amabile, T. M. (1999). Consensual assessment. En M. A. Runco, & S. R. Pritzker (Eds.), Encyclopedia of creativity (Vol. I) (pp. 347-359). New York: Elsevier.
  • Hu, W., &Adey, P. (2002).A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
  • Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychological methods, 14(1), 6.
  • Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48.
  • Lin, C., Hu, W., Adey, P., & Shen, J. (2003). The influence of CASE on scientific creativity. Research in Science Education, 33, 143–162.
  • Lubart, T. I. (1994). Creativity. In R. J. Sternberg (Ed.), Thinking and Problem Solving (pp. 289-332). London: Academic Press.
  • MacKinnon, D. W. (1962). The nature and nurture of creative talent. American Psychologist, 17, 484-495.
  • Mcmann, G.M., & Barnett, D.W.(1994). Structural analysis of correlated factors: Lessons from the verbal-performance dichotomy of the Wechsler scales. School Psychology Quarterly, 9, 161-197.
  • OCDE (2006). El programa PISA de la OCDE ¿Qué es y para qué sirve?. París: OCDE. Recuperado en http://www.oecd.org/pisa/39730818.pdf (última visita 2015.03.05).
  • Perkins, D. N. (2000/2003). Archimedes' bathtub: The art and logic of breakthrough thinking. New York: Norton & Company. Trad. Castellano, La bañera de Arquímedes y otras historias del descubrimiento científico: el arte del pensamiento creativo. Barcelona: Paidós.
  • Plucker, J. A., & Beghetto, R. A. (2004). Why Creativity Is Domain General, Why It Looks Domain Specific, and Why the Distinction Does Not Matter. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization (pp. 153-167). Washington, DC, US: American Psychological Association.
  • Ruiz, M. J., Bermejo, R., Ferrando, M., Prieto, M. D., & Sainz, M. (2014). Inteligencia y Pensamiento Científico-Creativo: Su convergencia en la explicación del rendimiento académico de los alumnos. Electronic Journal of Research in Educational Psychology, 12(2), 283-302.
  • Runco, M. A., & Charles, R. E. (1993). Judgments of originality and appropriateness as predictors of creativity. Personality and Individual Differences, 15(5), 537-546
  • Sak, U. (2010). Assessment of creativity: Focus on math and science. In Paper presented at the 12th ECHA Conference Paris, France.
  • Sak, U. & Ayas (2011). C-SAT Manual. Unpublished Manuscript.
  • Sak, U., & Ayas, M. B. (2013). Creative Scientific Ability Test (C-SAT): A new measure of scientific creativity. Psychological Test and Assessment Modeling, 55(3), 315-328.
  • Sak, U., Turkan, Y., Sengil, S., Akar, A., Demirel, S., & Gucyeter, S. (2009). Matematiksel Yetenek Testi (MYT)’nin gelişimi ve psikometrik özellikleri (Development and psychometric properties of the Test of Mathematical Talent). Paper presented at the 2nd National Conference on Talented Children, Eskisehir, Turkey.
  • Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323-338.
  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 2, 420-428.
  • Simonton, D. K. (2011). Creativity and discovery as blind variation and selective retention: Multiple-variant definition and blind-sighted integration. Psychology of Aesthetics, Creativity, and the Arts, 5(3), 222-228.
  • Snyder, A., Mitchell, J., Bossomaier, T., & Pallier, G. (2004). The creativity quotient: an objective scoring of ideational fluency. Creativity Research Journal, 16(4), 415-419.
  • Sternberg, R. J., & Davidson, J. E. (1999). Insight. En M. A. Runco, & S. R. Pritzker, (Eds.). Encyclopedia of Creativity (vol. II) (pp. 57-69). New York: Elsevier.
  • Sternberg, R. J., & Lubart, T. I. (1995/1997). Defying the Crowd: Cultivating Creativity in a Culture of Conformity. New York: Free Press. Trad. Castellano, La creatividad en una cultura conformista: un desafío a las masas. Barcelona: Paidós Ibérica.
  • Torrance, E. P. (1974). Torrance Tests of Creative Thinking. Beaconville, IL: Scholastic Testing Services.
  • Tschirgi, J. E. (1980). Sensible Reasoning - a Hypothesis About Hypotheses. Child Development, 51(1), 1-10.
  • Weiping, H. & Philip, A. (2002).'A scientific creativity test for secondary school students'. International Journal of Science Education, 24(4), 389 – 403.
  • Weisberg, R. W. (2014). Case Studies of Genius: Ordinary Thinking, Extraordinary Outcomes. In Simonton, D. K. (Ed.), The Wiley Handbook of Genius (pp. 139-165). Chichester, UK: John Wiley & Sons, Ltd.
  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967.