Learning the Consensus of Multiple Correspondences between Data Structures

  1. Moreno García, Carlos Francisco
Dirigée par:
  1. Francesc Serratosa Casanelles Directeur/trice

Université de défendre: Universitat Rovira i Virgili

Fecha de defensa: 12 juillet 2016

Jury:
  1. Mario Vento President
  2. Ernest Valveny Llobet Secrétaire
  3. Juan Ramón Rico Juan Rapporteur

Type: Thèses

Teseo: 428045 DIALNET lock_openTDX editor

Résumé

En aquesta tesi presentem un marc de treball per aprendre el consens donades múltiples correspondències. S'assumeix que les diferents parts involucrades han generat aquestes correspondències per separat, i el nostre sistema actua com un mecanisme que calibra diferents característiques i considera diferents paràmetres per aprendre les millors assignacions i així, conformar una correspondència amb la major precisió possible a costa d'un cost computacional raonable. Aquest marc de treball de consens és presentat en una forma gradual, començant pels desenvolupaments més bàsics que utilitzaven exclusivament conceptes ben definits o únicament un parell de correspondències, fins al model final que és capaç de considerar múltiples correspondències, amb la capacitat d'aprendre automàticament alguns paràmetres de ponderació. Cada pas d'aquest marc de treball és avaluat fent servir bases de dades de naturalesa variada per demostrar efectivament que és possible tractar diferents escenaris de matching. Addicionalment, dos avanços suplementaris relacionats amb correspondències es presenten en aquest treball. En primer lloc, una nova mètrica de distància per correspondències s'ha desenvolupat, la qual va derivar en una nova estratègia per a la cerca de mitjanes ponderades. En segon lloc, un marc de treball específicament dissenyat per a generar correspondències al camp del registre d'imatges s'ha modelat, on es considera que una de les imatges és una imatge completa, i l'altra és una mostra petita d'aquesta. La conclusió presenta noves percepcions de com el nostre marc de treball de consens pot ser millorada, i com els dos desenvolupaments paral·lels poden convergir amb el marc de treball de consens. En esta tesis presentamos un marco de trabajo para aprender el consenso dadas múltiples correspondencias. Se asume que las distintas partes involucradas han generado dichas correspondencias por separado, y nuestro sistema actúa como un mecanismo que calibra distintas características y considera diferentes parámetros para aprender las mejores asignaciones y así, conformar una correspondencia con la mayor precisión posible a expensas de un costo computacional razonable. El marco de trabajo de consenso es presentado en una forma gradual, comenzando por los acercamientos más básicos que utilizaban exclusivamente conceptos bien definidos o únicamente un par de correspondencias, hasta el modelo final que es capaz de considerar múltiples correspondencias, con la capacidad de aprender automáticamente algunos parámetros de ponderación. Cada paso de este marco de trabajo es evaluado usando bases de datos de naturaleza variada para demostrar efectivamente que es posible tratar diferentes escenarios de matching. Adicionalmente, dos avances suplementarios relacionados con correspondencias son presentados en este trabajo. En primer lugar, una nueva métrica de distancia para correspondencias ha sido desarrollada, la cual derivó en una nueva estrategia para la búsqueda de medias ponderadas. En segundo lugar, un marco de trabajo específicamente diseñado para generar correspondencias en el campo del registro de imágenes ha sido establecida, donde se considera que una de las imágenes es una imagen completa, y la otra es una muestra pequeña de ésta. La conclusión presenta nuevas percepciones de cómo nuestro marco de trabajo de consenso puede ser mejorada, y cómo los dos desarrollos paralelos pueden converger con éste. In this work, we present a framework to learn the consensus given multiple correspondences. It is assumed that the several parties involved have generated separately these correspondences, and our system acts as a mechanism that gauges several characteristics and considers different parameters to learn the best mappings and thus, conform a correspondence with the highest possible accuracy at the expense of a reasonable computational cost. The consensus framework is presented in a gradual form, starting from the most basic approaches that used exclusively well-known concepts or only two correspondences, until the final model which is able to consider multiple correspondences, with the capability of automatically learning some weighting parameters. Each step of the framework is evaluated using databases of varied nature to effectively demonstrate that it is capable to address different matching scenarios. In addition, two supplementary advances related on correspondences are presented in this work. Firstly, a new distance metric for correspondences has been developed, which lead to a new strategy for the weighted mean correspondence search. Secondly, a framework specifically designed for correspondence generation in the image registration field has been established, where it is considered that one of the images is a full image, and the other one is a small sample of it. The conclusion presents insights of how our consensus framework can be enhanced, and how these two parallel developments can converge with it.