Funciones de calefacción, prevención y deshielo en materiales inteligentes compuestos por matrices cementicias y resinas con nanoadiciones carbonosas híbridas o con materiales de desecho

  1. Mariana Farcas, Catalina
Dirigée par:
  1. Pedro Garcés Miguel Directeur/trice
  2. Óscar Galao Malo Directeur

Université de défendre: Universitat d'Alacant / Universidad de Alicante

Fecha de defensa: 19 janvier 2022

Jury:
  1. Eva M. García Alcocel President
  2. Marcos García Alberti Secrétaire
  3. Lucía Fernández Carrasco Rapporteur
Département:
  1. INGENIERIA CIVIL

Type: Thèses

Teseo: 697533 DIALNET lock_openRUA editor

Résumé

Esta investigación se ha realizado en el marco del Proyecto Europeo MASTRO “Intelligent bulk MAterials for Smart TRanspOrt industries”. Se trata de un proyecto financiado por el programa Horizonte 2020 de la Comisión Europea, con un presupuesto de 5.940.666,28 € para un consorcio de 16 participantes, liderado por Acciona y formado por: Acciona, ALKE SRL, Arkema France SA, Embraer Portugal SA, Superior Graphite Deutschland GMBH, Applynano Solutions S.L., Axia Innovation UG, BSRIA Limited, Centro di Ricerche Europeo di Tecnologie Design e Materiali, Centro Tecnologico das Industrias Textil e do Vestuario de Portugal, Centre Technique Industriel de la Plasturgie et des Composites, Diadgroup SRL, EMBRAER Portugal SA, Universidad de Alicante, Universita Degli Studi di Salerno, The University of Sheffield, PINOUT Solutions SL, Airholding S.A.. El proyecto comenzó en diciembre del año 2017 y ha finalizado recientemente, en agosto del 2021. El objetivo general de MASTRO es desarrollar materiales inteligentes para el sector del transporte basados en conceptos novedosos como metodologías de autodetección, deshielo y autocurado. ese pretende aumentar la seguridad de los consumidores, la vida útil de los componentes y su rendimiento, al tiempo que se reducen los costes de mantenimiento, la fabricación y las emisiones de gases de efecto invernadero durante su vida útil. Las funcionalidades de autorrespuesta abordados se basan en tres fenómenos físicos: la piezorresistividad (variación de la resistividad eléctrica de un material cuando se aplica una tensión mecánica), el efecto de la primera ley de Joule (la relación entre el calor generado en un conductor y el flujo de corriente eléctrica, la resistencia y el tiempo) y la disipación electrostática (para proteger un material de las descargas electrostáticas). La funcionalidad de los materiales inteligentes desarrollados se demostró en condiciones adecuadas a nivel de prototipo para los sectores aeroespacial, automovilístico y de infraestructuras de transporte, como los bordes de ataque de las alas de los aviones, los parachoques de los coches y los pavimentos. Los resultados del proyecto han derivado en numerosas aplicaciones en los sectores mencionados. Así, las nanotecnologías y los materiales avanzados serán la base de la próxima generación de productos de alto valor añadido, impulsando las oportunidades de mercado de la Unión Europea [1], [2]. En esta tesis se han estudiado dos matrices distintas (cemento y resina), correspondiendo con dos de las estudiadas dentro del proyecto MASTRO. Aunque es necesario realizar esfuerzos adicionales para superar algunos de los inconvenientes asociados a esta nueva tecnología, la multifuncionalidad de los materiales podría ser pronto una realidad. La multifuncionalidad suele basarse en el aumento de la conductividad eléctrica de los compuestos mediante la adición de adiciones conductores. Para los materiales en base cemento conductores multifuncionales (MCCM) entre las nuevas funciones distintas de su función estructural que este podría desarrollar están: su uso como sensor de deformación o tensión, ánodo para la extracción electroquímica de cloruros, apantallamiento de interferencias electromagnéticas y -una de las aplicaciones funcionales más prometedoras- la calefacción. Al respecto de esta última aplicación, y en particular en el campo de la ingeniería civil, la prevención de la formación de hielo (o el deshielo) de las infraestructuras civiles (aeropuertos, puentes, enlaces viales, etc.) está despertando un gran interés en diferentes empresas relacionadas con dicho campo. El presente trabajo se ha dividido en tres partes. La primera se centra en el desarrollo de la función de calefacción en MCCM con una adición híbrida carbonosa, la segunda parte se centra en los MCCM con substitución de una parte de los áridos por coque y la tercera parte se centra en resinas epoxi con la misma adición hibrida que en la primera parte de materiales carbonosos, estudiando en todos los casos la mencionada función. La primera parte del estudio de esta tesis tiene como objetivo estudiar la viabilidad de pasta de cemento conductora y hormigón conductor con una adición híbrida de nanotubos de carbono (CNT, por su nombre en inglés carbon nanotubes) y polvo de grafito (EG, por su nombre en inglés expanded graphite) como material para la calefacción, prevención de formación de hielo y deshielo en pavimentos, a partir de ensayos específicos para cada caso. Los resultados confirman que los compuestos de cemento conductor estudiados, con la adición de 1% CNT + 5% EG, exhibieron propiedades de calefacción, deshielo y prevención de la formación de hielo, al aplicar voltajes en AC y en DC constantes entre los dos extremos de cada muestra, con un consumo de energía relativamente bajo. El principal aporte de este apartado del trabajo es lograr un nivel de conductividad suficiente para el desarrollo de la función de calefacción y deshielo utilizando esta adición híbrida en hormigón, que no se ha utilizado hasta ahora, para ser aplicada en estructuras reales de hormigón. Este estudio ha sido publicado en la revista “Smart Materials and Structures”, de la Editorial IOP. El trabajo se llevó a cabo en exclusiva por el equipo de la Universidad de Alicante. El uso de materiales de desecho (como el coque de petróleo) como sustitutos del cemento o de los áridos podría reducir la huella de carbono. Con la intención de obtener un material más sostenible se ha seguido la investigación de la función de calefacción utilizando coque de petróleo como adición conductora y como sustituto de una parte de los áridos, lo que nos lleva a la segunda parte de esta tesis. En este trabajo, el uso de coque de petróleo produjo materiales multifuncionales a base de cemento con resistividades bajas (obteniendo un ahorro económico considerado a la hora de utilizar coque en lugar a otros nanomateriales carbonosos y, con toda probabilidad, una huella de carbono menor) con una buena trabajabilidad lo que hace que estos compuestos sean adecuados para la calefacción, la prevención de la formación de hielo y el deshielo, debido al efecto Joule. Este estudio ha sido presentado en el Congreso Internacional “CEMENT – BASED MATERIALS TAILORED” For a sustainable future (CBMT) que ha tenido lugar en Turquía. El trabajo se llevó a cabo por el equipo de la Universidad de Alicante en colaboración con ACCIONA. En la tercera parte de este estudio, se han incorporado CNT y EG para proporcionar conductividad eléctrica y capacidad de autocalentamiento por efecto Joule a una matriz epoxi. Los resultados muestran que la mayor relación de aspecto de los CNT contribuyó significativamente a la conductividad eléctrica de la resina epoxi en comparación con la del grafito, y, sin embargo, la morfología 2D del grafito contribuyó específicamente a incrementar la conductividad térmica. Además, la presencia de grafito mejoró la estabilidad térmica de la resina epoxi, ayudando a evitar su deformación (a mayor conductividad térmica, mayor disipación de calor), pero no contribuyó a la función de calefacción por efecto Joule. Por otro lado, se demostró la viabilidad de las resinas epoxi eléctricamente conductoras para aplicaciones de deshielo y prevención de la formación de hielo por efecto Joule. Este estudio ha sido publicado en la revista “nanomaterials”, de la Editorial MDPI. El trabajo se llevó a cabo por el equipo de la Universidad de Alicante en colaboración con Applynano Solutions S.L y con la Universita Degli Studi di Salerno.