Modelos neuronales basados en la metaplasticidad para la ayuda al diagnóstico clínico
- Daniel Ruiz Fernández Directeur
Université de défendre: Universitat d'Alacant / Universidad de Alicante
Fecha de defensa: 03 décembre 2021
- Francisco Javier García Casado President
- Jerónimo Mora Pascual Secrétaire
- Patricia Sánchez González Rapporteur
Type: Thèses
Résumé
La inteligencia artificial tiene el potencial de transformar radicalmente la asistencia sanitaria aportando gran rapidez en la gestión de la información que manejan los profesionales y repercutiendo directamente en sus actuaciones. Los estudios más recientes sobre el rol actual de la inteligencia artificial en la medicina y la atención sanitaria, identifican cuatro líneas principales de investigación directamente relacionadas con la mejora de los sistemas de ayuda a la decisión clínica: gestión de los servicios de salud, medicina predictiva, datos del paciente y toma de decisiones clínicas. En esta tesis doctoral nos centramos en la segunda línea de investigación, la medicina predictiva, con el objetivo de mejorar el rendimiento de los actuales métodos y algoritmos de inteligencia artificial para el diagnóstico clínico. Para ello, se ha incorporado en algunas de las redes neuronales artificiales más utilizadas de la literatura actual, una propiedad biológica que emerge del cerebro y que está directamente relacionada con la homeostasis, la memoria y el aprendizaje: la metaplasticidad sináptica. La metaplasticidad sináptica es un fenómeno biológico que se define brevemente como la plasticidad de la plasticidad sináptica, lo que significa que la historia previa de la actividad sináptica determina su plasticidad actual. Este fenómeno interfiere con algunos de los mecanismos subyacentes que se consideran importantes en los procesos de memoria y aprendizaje, como la potenciación a largo plazo y la depresión a largo plazo. En un modelo computacional la metaplasticidad sináptica se define como metaplasticidad artificial, un procedimiento de aprendizaje que produce una mayor ponderación de los pesos sinápticos de los patrones menos frecuentes que de los patrones más frecuentes, como una forma de extraer más información de los primeros que de los segundos. Esta mejora se estima que puede afectar al rendimiento en las redes neuronales artificiales tanto en términos de precisión como en tiempos de convergencia o velocidad de aprendizaje. Así mismo, dadas ambas mejoras, se plantea abordar también uno de los grandes problemas de la inteligencia artificial en medicina: el entrenamiento de redes neuronales artificiales utilizando conjuntos de datos reducidos. Este mecanismo biológico se ha incorporado en diferentes tipos de redes neuronales artificiales como un mecanismo de actualización de pesos que modifica la ponderación en función de la frecuencia de un patrón. Además, dadas las particularidades de cada arquitectura de red neuronal, la modificación de sus procesos de aprendizaje para la incorporación de la metaplasticidad artificial no es una tarea trivial. En este trabajo se han utilizado dos tipos de redes neuronales artificiales orientadas al análisis de datos y al diagnóstico por imagen, respectivamente: las redes neuronales artificiales de base radial y las redes neuronales convolucionales. Para la primera, se ha incorporado la metaplasticidad artificial modificando el aprendizaje en tres fases, mientras que para la segunda, se ha modificado el proceso de convolución de las capas convolucionales de la red. En ambos casos se ha logrado que la red neuronal mejore su rendimiento tanto en términos de precisión como en velocidad de convergencia, confirmando así las hipótesis iniciales.