Diseño y prototipo de supercondensador asimétrico en electrolito acuoso basado en materiales carbonosos
- Merino González, Camilo
- Emilia Morallón Núñez Directora
- Diego Cazorla Amorós Codirector
Universidad de defensa: Universitat d'Alacant / Universidad de Alicante
Fecha de defensa: 18 de enero de 2021
- Miguel Ángel de la Casa Lillo Presidente/a
- David Salinas Torres Secretario
- Juana María Rosas Martínez Vocal
Tipo: Tesis
Resumen
Introducción o motivación de la tesis: Se ha realizado un estudio de la caracterización y fabricación de un prototipo supercondensador asimétrico en electrolito acuoso basado en materiales carbonosos en la escala de los 100 cm2. Desarrollo teórico: Se ha comenzado con el estudio de un carbón activado comercial en celda tipo botón estándar CR2032. Tras la determinación de los valores de capacidad y comportamiento del material en configuración tanto de electrodo positivo como en electrodo negativo, se ha realizado un estudio de modelo matemático de diseño y fabricación de celda completa. Este modelo se ha evaluado en electrodos de tamaños de 100cm2 y posteriomente encapsulados en formato de celda prismática y celda de bolsa tipo "pouch cell". Conclusión: El resultado ha sido un modelo viable de establecimiento del máximo voltaje seguro de operación de dispositivo para una relación de asimetría determinada. Bibliografía consultada: C. McGlade y P. Ekins, «The geographical distribution of fossil fuels unused when limiting global warming to 2 C,» Nature, vol. 517, nº 7533, p. 187, 2015. [2] F. Barbir, T. Veziroglu y H. PlassJr, «Environmental damage due to fossil fuels use,» International journal of hydrogen energy, vol. 15, nº 10, pp. 739--749, 1990. [3] N. Abas, A. Kalair y N. Khan, «Review of fossil fuels and future energy technologies,» Futures, vol. 69, pp. 31--49, 2015. [4] R. Kumar Pachauri, M. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. Church, L. Clarke, Q. Dahe, P. Dasgupta y O. , Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Ipcc, 2014. [5] M. E. Mousavi, J. L. Irish, A. E. Frey, F. Olivera y B. L. Edge, «lobal warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding,» Climatic Change, vol. 104, pp. 575--597, 2011. [6] S. M. Borras Jr, J. C. Franco y Z. Nam, «Climate change and land: Insights from Myanmar,» World Development, vol. 129, p. 104864, 2020. [7] R. Mendelsohn, W. D. Nordhaus y D. Shaw, «The impact of global warming on agriculture: a Ricardian analysis,» The American economic review, pp. 753--771, 1994. [8] W. R. Cline, The economics of global warming., Institute for International Economics, 1992. [9] A. Arneth , H. Barbosa, T. Benton , K. Calvin , E. Calvo , S. Connors , A. Cowie , E. Davin , F. Denton , R. van Diemen , F. Driouech , A. Elbehri , J. Evans , M.Ferrat , J. Harold , E. Haughey , M. Herrero y J. House , «Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems,» IPCC, 2019. [10] T. Garnett, «Livestock-related greenhouse gas emissions: impacts and options for policy makers,» environmental science & policy, vol. 12, nº 4, pp. 491--503, 2009. [11] www.fao.org, «El trabajo de la FAO sobre el cambio climático,» 2017. [12] Q. Schiermeier, «Eat less meat: UN climate-change report calls for change to human diet,» Nature Publishing Group, vol. 572, nº 7769, pp. 291-292, 2019. [13] www.iea.org, «Agencia Internacional de la Energía,» 2017. [En línea]. Available: www.iea.org. [14] IEA, «Tracking Industry,» IEA, [En línea]. Available: https://www.iea.org/reports/tracking-industry-2019. [Último acceso: 2019]. [15] G. J. Offer, D. Howey, M. Contestabile, R. Clague y N. Brandon, «Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system,» Energy policy, vol. 38, nº 1, pp. 24--29, 2010. [16] www.ree.es, «Annual Report Summary 2016,» 2017. [17] A. Evans, V. Strezov y T. J. Evans, «Assessment of utility energy storage options for increased renewable energy penetration,» Renewable and Sustainable Energy Reviews, vol. 16, nº 6, pp. 4141--4147, 2012. [18] N. S. Wade, P. Taylor, P. Lang y P. Jones, «Evaluating the benefits of an electrical energy storage system in a future smart grid,» Energy policy, vol. 38, nº 11, pp. 7180--7188, 2010. [19] B. Dunn, H. Kamath y J.-M. Tarascon, «Electrical energy storage for the grid: a battery of choices,» Science, vol. 334, nº 6058, pp. 928--935, 2011. [20] P. J. Hall y E. J. Bain, «Energy-storage technologies and electricity generation,» Energy policy, vol. 36, nº 12, pp. 4352--4355, 2008. [21] M. Baumann, B. Zimmermann, H. Dura, B. Simon y M. Weil, «A comparative probabilistic economic analysis of selected stationary battery systems for grid applications,» de 2013 International Conference on Clean Electrical Power (ICCEP), IEEE, 2013, pp. 87--92. [22] R. J. y R. , «Economics of electric energy storage for energy arbitrage and regulation in New York,» Energy Policy, vol. 35, nº 4, pp. 2558--2568, 2007. [23] K. Mongird, V. V. Viswanathan, P. J. Balducci, M. J. E. Alam, V. Fotedar, V. S. Koritarov y B. Hadjerioua, «Energy Storage Technology and Cost Characterization Report,» 7 2019. [En línea]. Available: https://www.osti.gov/servlets/purl/1573487. [24] «Boomberg New Energy Finance,» 2017. [En línea]. Available: www.bloomberg.com. [25] E. S. A. «A Vision for Energy Storage in 2025,» 11 2017. [En línea]. Available: https://energystorage.org/wp/wp-content/uploads/2019/06/esa_whitepaper_exec_summ_final-1.pdf. [26] Z. Yang, Z. Jianlu, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon y J. Liu, «Electrochemical Energy Storage for Green Grid,» Chemical reviews, vol. 111, nº 5, pp. 3577--3613, 2011. [27] S. Chittur Krishnaswamy y T. Thandavarayan, «Double layer energy storage in graphene-a study,» Micro and Nanosystems, vol. 4, nº 3, pp. 180--185, 2012. [28] B. Evans Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013. [29] M. Yoshio, R. J. Brodd y A. Kozawa, Lithium-ion batteries, vol. 1, Springer, 2009. [30] J. Li, E. R. Murphy, J. Winnick y P. A. Kohl, «Studies on the cycle life of commercial lithium ion batteries during rapid charge--discharge cycling,» Journal of Power Sources, vol. 102, nº 1, pp. 294--301, 2001. [31] X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu y K. Amine, «Commercialization of lithium battery technologies for electric vehicles,» Advanced Energy Materials, vol. 9, nº 27, p. 1900161, 2019. [32] F. Feng y D. Northwood, «Self-discharge characteristics of a metal hydride electrode for Ni-MH rechargeable batteries,» International journal of hydrogen energy, vol. 30, nº 12, pp. 1367--1370, 2005. [33] P. Wolfs, «An economic assessment of “second use” lithium-ion batteries for grid support,» de 2010 20th Australasian Universities Power Engineering Conference, 2010, pp. 1--6. [34] G. Albright, J. Edie y S. Al-Hallaj, «A comparison of lead acid to lithium-ion in stationary storage applications,» AllCell Technologies LLC, 2012. [35] E. J. Plichta y W. Behl, «High temperature rechargeable molten salt battery». US Patente 5.035.963, 30 julio 1991. [36] J. Sudworth, «The sodium/nickel chloride (ZEBRA) battery,» Journal of power sources, vol. 100, nº 1-2, pp. 149--163, 2001. [37] J. L. Sudworth, «Zebra batteries,» Journal of Power Sources, vol. 51, nº 1-2, pp. 105--114, 1994. [38] C.-H. Dustmann, «Advances in ZEBRA batteries,» Journal of Power Sources, vol. 127, nº 1, pp. 85--92, 2004. [39] B. Fassler, P. Kepplinger y J. Petrasch, «Field testing of repurposed electric vehicle batteries for price-driven grid balancing,» Journal of Energy Storage, vol. 21, pp. 40--47, 2019. [40] P. Vanýsek y V. Novák, «Redox flow batteries as the means for energy storage,» Journal of Energy Storage, pp. 435--441, 2017. [41] A. Lewandowska-Bernat y U. Desideri, «Opportunities of Power-to-Gas technology,» Energy Procedia, vol. 105, pp. 4569--4574, 2017. [42] E. Moioli, R. Mutschler y A. Züttel, «Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications,» Renewable and Sustainable Energy Reviews, vol. 107, pp. 497--506, 2019. [43] Y. Zhao, B. P. Setzler, J. Wang y Y. Yan, «Direct Ammonia Fuel Cell Enabled By Precious-Metal-Free Cathode,» de 233rd ECS Meeting (May 13-17, 2018), ECS, 2018, pp. 1997--1997. [44] N. Malik, Circuitos electrónicos: Análisis, simulación y diseño, Prentice Hall, 1996. [45] M. Inagaki, H. Konno y O. Tanaike, «Carbon materials for electrochemical capacitors,» Journal of power sources, vol. 195, nº 24, pp. 7880--7903, 2010. [46] A. Burke, «Ultracapacitors: why, how, and where is the technology,» Journal of power sources, vol. 91, nº 1, pp. 37--50, 2000. [47] M. D. Stoller, S. Park, Y. Zhu, J. An y R. S. Ruoff, «Graphene-based ultracapacitors,» Nano letters, vol. 8, nº 10, pp. 3498--3502, 2008. [48] B. W. Ricketts y C. Ton-That, «Self-discharge of carbon-based supercapacitors with organic electrolytes,» Journal of Power Sources, vol. 89, nº 1, pp. 64--69, 2000. [49] M. Uno y K. Tanaka, «Accelerated charge--discharge cycling test and cycle life prediction model for supercapacitors in alternative battery applications,» IEEE Transactions on Industrial Electronics, vol. 59, nº 12, pp. 4704--4712, 2011. [50] S. Roldán, D. Barreda, M. Granda, R. Méndez, R. Santamaría y C. Blanco, «An approach to classification and capacitance expressions in electrochemical capacitors technology,» Physical Chemistry Chemical Physics, vol. 17, nº 2, pp. 1084--1092, 2015. [51] C. Peng, S. Zhang, X. Zhou y G. Z. Chen, «Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors,» Energy & Environmental Science, vol. 3, nº 10, pp. 1499--1502, 2010. [52] J. Zhang y X. Zhao, «On the configuration of supercapacitors for maximizing electrochemical performance,» ChemSusChem, vol. 5, nº 5, pp. 818--841, 2012. [53] R. Kotz y M. Carlen, «Principles and applications of electrochemical capacitors,» Electrochimica acta, vol. 45, nº 15-16, pp. 2483--2498, 2000. [54] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood y E. E. Kwon, «Recent advancements in supercapacitor technology,» Nano Energy, vol. 52, pp. 441--473, 2018. [55] J. R. Miller, «Perspective on electrochemical capacitor energy storage,» Applied Surface Science, vol. 460, pp. 3--7, 2018. [56] Y. Wang, Y. Song y Y. Xia, «Electrochemical capacitors: mechanism, materials, systems, characterization and applications,» Chemical Society Reviews, vol. 45, nº 21, pp. 5925--5950, 2016. [57] Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn y R. B. Kaner, «Design and mechanisms of asymmetric supercapacitors,» Chemical reviews, vol. 118, nº 18, pp. 9233--9280, 2018. [58] K. Nueangnoraj, R. Ruiz-Rosas, H. Nishihara, S. Shiraishi, E. Morallon, D. Cazorla Amorós y T. Kyotani, «Carbon--carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes,» Carbon, vol. 67, pp. 792--794, 2014. [59] P. K. Sharma, A. Arora y S. Tripathi, «Review of supercapacitors: Materials and devices,» Journal of Energy Storage, vol. 21, pp. 801--825, 2019. [60] Z. Weng, F. Li, D.-W. Wang, L. Wen y . H.-M. Cheng, «Controlled electrochemical charge injection to maximize the energy density of supercapacitors,» Angewandte Chemie International Edition, vol. 52, nº 13, pp. 3722--3725, 2013. [61] J. H. Chae y G. Z. Chen, «1.9 V aqueous carbon--carbon supercapacitors with unequal electrode capacitances,» Electrochimica Acta, vol. 86, pp. 248--254, 2012. [62] A. Slesinski, K. Fic y E. Frackowiak, «New Trends in Electrochemical Capacitors,» Advances in Inorganic Chemistry, vol. 72, pp. 247--286, 2018. [63] I. Prado Piñeiro, D. Salinas Torres, R. Ruíz Rosas, E. Morallón Núñez y D. Cazorla Amorós, «Design of Activated Carbon/Activated Carbon Asymmetric Capacitors,» Frontiers in Materials, vol. 3, p. 16, 2016. [64] J. Núñez Delgado y J. Bertrán, Química Física, Barcelona: Ariel, 2002. [65] M. Bleda Martínez, J. Maciá Agulló, D. Lozano Castelló, E. Morallón Núñez, D. Cazorla Amorós y A. Linares Solano, «Role of surface chemistry on electric double layer capacitance of carbon materials,» Carbon, vol. 43, pp. 2677-2684, 2005. [66] D. Cazorla Amorós, D. Lozano Castelló, E. Morallón Núñez, M. Bleda Martínez, A. Linares Solano y S. Shiraishi, «Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate,» Carbon, vol. 48, p. 1451 –1456, 2010. [67] J. Kang, J. Wen, S. H. Jayaram, A. Yu y X. Wang, «Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes,» Electrochimica Acta, vol. 115, pp. 587--598, 2014. [68] MURATA, «www.murata.com,» 2020. [En línea]. Available: https://www.murata.com/~/media/webrenewal/products/capacitor/edlc/techguide/electrical/c2m1cxs-053.ashx. [Último acceso: 2020]. [69] M. He, K. Fic, E. Fra, P. Novak, E. J. Berg y o. , «Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis,» Energy & Environmental Science, vol. 9, nº 2, pp. 623--633, 2016. [70] F. J. García Mateos, R. Ruíz Rosas, J. M. Rosas, J. Rodríguez Mirasol y T. Cordero, «Controlling the Composition, Morphology, Porosity, and Surface Chemistry of Lignin-Based Electrospun Carbon Materials,» Frontiers In Materials, vol. 6, p. 114, 2019. [71] F. Soavi, L. G. Bettini, P. Piseri, P. Milani, C. Santoro, P. Atanassov y C. Arbizzani, «Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems,» Journal of power sources, vol. 326, pp. 717--725, 2016. [72] G. Z. Chen, «Supercapacitor and supercapattery as emerging electrochemical energy stores,» International Materials Reviews, vol. 62, nº 4, pp. 173--202, 2017. [73] H. Gualous, R. Gallay, M. A. Al Sakka, a. oukaour, B. Tala-Ighil y B. Boudart, «Calendar and cycling ageing of activated carbon supercapacitor for automotive application,» Microelectronics Reliability, vol. 52, nº 9--10, pp. 2477--2481, 2012. [74] J. Lee, N. Jäckel, D. Kim, M. Widmaier, S. Sethuraman, P. Srimuk, C. Kim, S. Fleischmann, M. Zeiger y V. Presser, «Porous carbon as a quasi-reference electrode in aqueous electrolytes,» Electrochimica Acta, vol. 222, pp. 1800--1805, 2016. [75] C. Liu, Z. Yu, D. Neff, A. Zhamu y B. Z. Jang, «Graphene-Based Supercapacitor with an Ultrahigh Energy Density,» Nano letters, vol. 10, nº 12, pp. 4863--4868, 2010. [76] J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque y M. Chesneau, «Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors,» Journal of power sources, vol. 101, nº 1, pp. 109--116, 2001. [77] A. Slesinski, K. Fic y E. Fraçkowiak, «New Trends in Electrochemical Capacitors,» Advances in Inorganic Chemistry, vol. 72, pp. 247-286, 2018. [78] L. L. Zhang y X. S. Zhao, «Carbon-based materials as supercapacitor electrodes,» Chemical Society Reviews, vol. 38, nº 9, pp. 2520--2531, 2009. [79] F. Beguin, E. R. Piñero y E. Frackowiak, Carbons for electrochemical energy storage and conversion systems, Crc Press, 2009. [80] K. S. Sing, «Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984),» Pure and applied chemistry, vol. 57, nº 4, pp. 603-619, 1985. [81] F. Rodriguez Reinoso y H. Marsh, Activated Carbon, Elsevier, 2006. [82] C. Moreno Castilla, F. Carrasco Marín, M. V. López Ramón y M. Á. Alvarez Merino, «Chemical and physical activation of olive-mill waste water to produce activated carbons,» Carbon, vol. 39, nº 9, pp. 1415--1420, 2001. [83] M. Á. Lillo Rodenas, D. Cazorla Amorós y Á. J. Linares Solano, «Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism,» Carbon, vol. 41, nº 2, pp. 267--275, 2003. Referencias [84] Á. Linares Solano, D. Lozano Castelló, M. Á. Lillo Ródenas y D. Cazorla Amorós, «Carbon activation by alkaline hydroxides: preparation and reactions, porosity and performances,» Chem. Phys. Carbon, vol. 30, p. 1, 2006. [85] M. Á. Álvarez Merino, F. Carrasco Marín y F. J. Maldonado Hódar , de Desarrollo y aplicaciones de materiales avanzados de carbón., Universidad Internacional de Andalucía, 2014. [86] M. J. Bleda Martínez, D. Lozano Castelló, D. Cazorla Amorós y E. Morallón Núñez, «Kinetics of double-layer formation: influence of porous structure and pore size distribution,» Energy & fuels, vol. 24, nº 6, pp. 3378-3384, 2010. [87] D. Larcher y J.-M. Tarascon, «Towards greener and more sustainable batteries for electrical energy storage,» Nature Chemistry, vol. 7, nº 1, p. 19, 2015. [88] N. Loeffler, T. Kopel, G.-T. Kim y S. Passerini, «Polyurethane Binder for Aqueous Processing of Li-Ion Battery Electrodes,» Journal of the Electrochemical Society, vol. 162, nº 14, pp. A2692--A2698, 2015. [89] A. Kazzazi, D. Bresser, A. Birrozzi y J. von Zamory, «Comparative Analysis of Aqueous Binders for High-Energy Li-Rich NMC as a Lithium-Ion Cathode and the Impact of Adding Phosphoric Acid,» ACS Applied Materials & Interfaces, vol. 10, nº 20, pp. 17214--17222, 2018. [90] A. Yu, V. Chabot y . J. Zhang, Electrochemical supercapacitors for energy storage and delivery: Fundamentals and applications, Nueva York: CRC press, 2017. [91] W. Bauer y D. Nötzel, «Rheological properties and stability of NMP based cathode slurries for lithium ion batteries,» Ceramics International, vol. 40, nº 3, pp. 4591--4598, 2014. [92] G. Venugopal, J. Moore, J. Howard y S. Pendalwar, «Characterization of microporous separators for lithium-ion batteries,» Journal of power sources, vol. 77, nº 1, pp. 34--41, 1999. [93] K. Takada, «Progress in solid electrolytes toward realizing solid-state lithium batteries,» Journal of Power Sources, vol. 394, pp. 74--85, 2018. [94] M. Dirican, C. Yan, P. Zhu y X. Zhang, «Composite solid electrolytes for all-solid-state lithium batteries,» Materials Science and Engineering: R: Reports, vol. 136, pp. 27-46, 2019. [95] S. Chen, L. Qiu y H.-M. Cheng, «Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices,» Chemical Reviews, vol. 120, nº 5, pp. 2811-2878, 2020.