Evolución microestructural de composites SiC/aleaciones CuSi obtenidos a través de infiltración reactiva

  1. Cornejo, J.
  2. Ordóñez Delgado, Salvador
  3. Iturriza Zubillaga, Iñigo
Journal:
Revista de metalurgia

ISSN: 0034-8570

Year of publication: 2010

Volume: 46

Issue: 3

Pages: 240-248

Type: Article

DOI: 10.3989/REVMETALM.0942 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de metalurgia

Abstract

The microstructural evolution of composites of SiC/Cu-Si alloys obtained through process of reactive infiltration to 1400 °C was studied. Three zones were detected in the obtained composites: the reaction zone, the transition zone and the infiltrated zone. In the reaction zone and transition zone the resulting microstructure was composed of a metallic phase, graphite laminae and SiC particles. It was found that SiC decomposes into these areas because of the alloy Cu-Si, so the available Si forms a liquid solution that a room temperature consisted of a á solid solution and a ã phase (Cu5Si). The carbon resulting from the decomposition of SiC precipitated as graphite laminae. In addition, the SiC decomposition was decreasing as the initial amount of Si in the alloy increased.

Bibliographic References

  • [1] C. D. Qin y B. Derby, British. Cer. Trans. J. 90 (1991) 124-125.
  • [2] A. M. Davidson y D. Regener, Compos. Sci. Technol. 60 (2000) 865-869. doi:10.1016/S0266-3538(99)00151-7
  • [3] A. Brendel, C. Popescu y C. Leyens, J. Nucl. Mater. 329-333 (2004) 804-808. doi:10.1016/j.jnucmat.2004.04.304
  • [4] K. M. Shu y G. C. Tu, Mat. Sci. Eng. A 349 (2003) 236-247. doi:10.1016/S0921-5093(02)00788-8
  • [5] G. Sundberg, P. Paul, C. Sung y T. Vacilos, J. Mater. Sci. 41 (2003) 236-247.
  • [6] S. Ordoñez, V. Martínez, F. Castro, L. Olivares y J.Marín, J.Mater. Sci. 38 (2003) 4.047-4.054.
  • [7] J. Cornejo, Tésis Magister, Facultad de Ingeniería, Universidad de Santiago de Chile, 2005.
  • [8] C. Rado, B. Drevet y N. Eustathopoulos, Acta Mater. 48 (2000) 4.483-4.491.
  • [9] H. Sakao y J. Elliot, Metall. Trans. 5 (1974) 2.036.
  • [10] C. Rado, S. Kalogeropoulou y N. Eustathopoulos, Mat. Sci. Eng. A 276 (2000)195-202. doi:10.1016/S0921-5093(99)00274-9
  • [11] K. Gan, M.Y. Gu y G. Mu, J. Mater. Sci. 43 (2008) 1.318-1.323.
  • [12] C. Rado y N. Eustathopoulos, Interface Sci. 12 (2004) 85-92. doi:10.1023/B:INTS.0000012297.30968.02
  • [13] K. Landry, C. Rado y N. Eustathopoulos,Metall. Mater.Trans. 27A (1996) 3.181-3.186.
  • [14] M. Song y B. Huang, Mat. Sci. Eng A 488 (2008) 601-607. doi:10.1016/j.msea.2008.03.022
  • [15] Smithells y Colin J., Metal Reference Book, Vol. II, Ed. Elseiver Inc., 4ª Ed., Oxford, Inglaterra, 1967, pp. 11-264.
  • [16] Y. Naidich, Prog. Surf.Membrane Sci. 14 (1981) 353.
  • [17] I. Aksay, C. Hoge, y J. Pask, J.Phys. Chem. 78 (1974) 1.178.
  • [18] R. German, PowderMetallurgy Science, 2nd Ed., College Road East., Princeton, New Jersey, EE. UU., 1994, pp. 15-120.
  • [19] J.D. Verhoeven, Fundamentals of Physical Metallurgy, Ed. JohnWiley&Sons, Nueva York, EE. UU., 1975, pp.