Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins
- Francisco J. Vallés Morán Director/a
- Rafael García Bartual Director/a
Universidad de defensa: Universitat Politècnica de València
Fecha de defensa: 10 de julio de 2020
- Ignacio Escuder Bueno Presidente/a
- Manuel Enrique Gómez de Membrillera Ortuño Secretario/a
- Daniel B. Bung Vocal
Tipo: Tesis
Resumen
The hydraulic jump constitutes one of the most complex phenomena with application in hydraulic engineering. On the one hand, a series of features bound to the hydraulic jump nature, such as the large turbulent fluctuations, the intense air entrainment and the significant energy dissipation, contribute to build its complexity, which places the current knowledge far from a full understanding of the phenomenon. On the other hand, it is precisely this energy dissipating nature that justifies its use in large-dam stilling basins, which constitutes its main practical application. Hence, the research here presented aimed to contribute to the general knowledge of the hydraulic jump phenomenon and its application for energy dissipation purposes in large-dam stilling basins. To this end, the bases of the phenomenon were addressed by characterising a classical hydraulic jump (CHJ). The research was conducted under a double numerical and physical modelling approach. Computational Fluid Dynamics (CFD) techniques were employed to simulate the hydraulic jump, whereas an experimental campaign in a physical model designed for the purpose was carried out too. The most relevant hydraulic jump characteristics were investigated, including sequent depths ratio, hydraulic jump efficiency, roller length, free surface profile, distributions of velocity and pressure, hydraulic jump length and fluctuating variables. The results from the physical and the numerical models were compared not only between them, but also with bibliographic information coming from an extensive literature review. It was found that both modelling approaches were able to accurately represent the phenomenon under study. Once the characterisation of the CHJ was carried out, the analysis of an energy dissipation stilling basin was developed. In particular, a general and representative case study consisting in a typified USBR II stilling basin was analysed through a physical and numerical modelling approach. In addition, the modelled results were compared with data and expressions coming from a bibliographic review. This comparison was intended to assess the particular characteristics of the hydraulic jump in a large-dam stilling basin, as well as the affection of the energy dissipation devices to the flow. The results revealed not only similarities to the CHJ, but also the influence of the energy dissipation devices existing in the stilling basin, all in good agreement with bibliographic information, despite some slight differences. Consequently, the presented modelling approach showed to be a useful tool to address free surface flows occurring in stilling basins. In particular, the results reported contribute to the enhancement of the knowledge concerning the CHJ and the flow in a typified USBR II stilling basin. These results can be used to improve the design of large-dam energy dissipation structures. This is a key issue in hydraulic engineering, especially in the recent years. Thus, there is an increasing urgency for the adaptation of existing stilling basins, which must cope with higher discharges than those considered in their original design. The adaptation of these structures becomes even more important due to climate change effects and increasing society demands regarding security and flood protection. In these terms, contributions to hydraulic jump modelling, as the ones presented in this research, are crucial to face the challenge of energy dissipation structures adaptation.