Acoustic behavior of porous concreteCharacterization by experimental and inversion methods

  1. M. Pereira
  2. J. Carbajo
  3. L. Godinho
  4. P. Amado-Mendes
  5. D. Mateus
  6. J. Ramis
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2019

Volumen: 69

Número: 336

Tipo: Artículo

DOI: 10.3989/MC.2019.03619 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

El uso de soluciones basadas en hormigón poroso con agregados ligeros se ha vuelto cada vez más común en el ámbito del control de ruido debido a su versatilidad en aplicaciones exteriores e interiores. En este trabajo, se han preparado muestras de hormigón poroso con agregados de arcilla expandida, para estudiar la influencia del tamaño de grano, el espesor y la relación agua / agregado / cemento en la absorción de sonido. Se han utilizado técnicas experimentales para obtener la impedancia superficial y el coeficiente de absorción de sonido. Además de las caracterizaciones experimentales, se ha aplicado un método inverso (basado en un algoritmo genético) para obtener los parámetros macroscópicos capaces de representar los materiales estudiados a través del modelo teórico de Horoshenkov-Swift. Mediante el modelo teórico de Horoshenkhov-Swift, es posible representar estos materiales en modelos numéricos como fluidos equivalentes.

Información de financiación

This work was developed within the scope of the POCI-01-0247-FEDER-033990 (iNBRail) Project, funded by FEDER funds through COMPETE 2020, Portugal 2020. This work was also supported by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007633 and through the Regional Operational Programme CENTRO2020 within the scope of the project CENTRO-01-0145-FEDER-000006. The support of COST (European Cooperation in Science and Technology) through the COST Action CA15125 – DENORMS: “Designs for Noise Reducing Materials and Structures” is here also acknowledged.

Referencias bibliográficas

  • Fahy, F. J. (2000). Foundations of engineering acoustics. Elsevier. https://doi.org/10.1016/B978-012247665-5/50002-3
  • Vaaina, M.; Hughes, D. C.; Horoshenkov, K. V.; Lapc«Ìk Jr, L. (2006) The acoustical properties of consolidated expanded clay granulates. Appl. Acoust., 67[8], 787-796. https://doi.org/10.1016/j.apacoust.2005.08.003
  • Magrini, U.; Ricciardi, P. (2000) Surface sound acoustical absorption and application of panels composed of granular porous materials. Proceedings of Inter-Noise 2000, 27-30.
  • Asdrubali, F.; Horoshenkov, K. V. (2002) The acoustic properties of expanded clay granulates. Build. Acoust., 9[2], 85-98. https://doi.org/10.1260/135101002760164553
  • Krezel, Z. A.; McManus, K. (2000) Recycled aggregate concrete sound barriers for urban freeways. In Waste Management Series, 1, 884-892. https://doi.org/10.1016/S0713-2743(00)80097-5
  • Kim, H. K.; Lee, H. K. (2010) Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust., 71[7], 607-615. https://doi.org/10.1016/j.apacoust.2010.02.001
  • Olek, J.; Weiss, W. J.; Neithalath, N. (2004) Concrete mixtures that incorporate inclusions to reduce the sound generated in portland cement concrete pavements, Report no. SQDH 2004-2, School of Civil Engineering, Purdue University.
  • Neithalath, N. (2004) Development and characterization of acoustically efficient cementitious materials, PhD Thesis, Purdue University.
  • Carbajo San MartÌn, J.; Esquerdo-Lloret, T. V.; Ramis- Soriano, J.; Nadal-Gisbert, A. V.; Denia, F. D. (2015) Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Mater. Construcc. 65 [320], e072. https://doi.org/10.3989/mc.2015.01115
  • Bartolini, R.; Filippozzi, S.; Princi, E.; Schenone, C.; Vicini, S. (2010) Acoustic and mechanical properties of expanded clay granulates consolidated by epoxy resin. Appl. Clay. Sci., 48[3], 460-465. https://doi.org/10.1016/j.clay.2010.02.007
  • Pereira, A.; Godinho, L.; Morais, L. (2010) The acoustic behavior of concrete resonators incorporating absorbing materials. Noise Control Eng. J., 58[1], 27-34. https://doi.org/10.3397/1.3264649
  • Kim, H. K.; Jeon, J. H.; Lee, H. K. (2012) Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construc. Build. Mat., 29, 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.067
  • Umnova, O.; Attenborough, K.; Shin, H. C.; Cummings, A. (2005) Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Appl. Acoust., 66[6], 607-624. https://doi.org/10.1016/j.apacoust.2004.02.005
  • Kim, H. K.; Lee, H. K. (2010) Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio. J. Sound Vib., 329[7], 866-879. https://doi.org/10.1016/j.jsv.2009.10.013
  • Maderuelo-Sanz, R.; Nadal-Gisbert, A. V.; Crespo- AmorÛs, J. E.; Morillas, J. M. B.; Parres-GarcÌa, F.; Sanchis, E. J. (2016) Influence of the microstructure in the acoustical performance of consolidated lightweight granular materials. Acoust Aust, 44[1], 149-157. https://doi.org/10.1007/s40857-016-0048-5
  • Buratti, C.; Merli, F.; Moretti, E. (2017) Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance. Energ. Build., 152, 472-482. https://doi.org/10.1016/j.enbuild.2017.07.071
  • Wang, H.; Ding, Y.; Liao, G.; Ai, C. (2016) Modeling and optimization of acoustic absorption for porous asphalt concrete. J. Eng. Mech., 142[4], 04016002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001037
  • Cobo, P.; SimÛn, F. (2016). A comparison of impedance models for the inverse estimation of the non-acoustical parameters of granular absorbers. Appl. Acoust., 104, 119-126. https://doi.org/10.1016/j.apacoust.2015.11.006
  • Attenborough, K. (1983) Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am., 73[3], 785-799. https://doi.org/10.1121/1.389045
  • Miki, Y. (1990) Acoustical properties of porous materialsgeneralizations of empirical models. J. Acoust. Soc. Jpn. (E), 11[1], 25-28. https://doi.org/10.1250/ast.11.25
  • Stinson, M. R.; Champoux, Y. (1992) Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am., 91[2], 685-695. https://doi.org/10.1121/1.402530
  • Allard, J. F.; Champoux, Y. (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am., 91[6], 3346-3353. https://doi.org/10.1121/1.402824
  • Panneton, R.; Atalla, N. (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J. Acoust. Soc. Am., 100[1], 346-354. https://doi.org/10.1121/1.415956
  • Fouladi, M. H.; Nor, M. J. M.; Ayub, M.; Leman, Z. A. (2010) Utilization of coir fiber in multilayer acoustic absorption panel. Appl. Acoust., 71[3], 241-249. https://doi.org/10.1016/j.apacoust.2009.09.003
  • Tournat, V.; Pagneux, V.; Lafarge, D.; Jaouen, L. (2004) Multiple scattering of acoustic waves and porous absorbing media. Phys. Rev. E, 70[2], 026609. https://doi.org/10.1103/PhysRevE.70.026609 PMid:15447612
  • Castagnede, B.; Aknine, A.; Brouard, B.; Tarnow, V. (2000) Effects of compression on the sound absorption of fibrous materials. Appl. Acoust., 61[2], 173-182. https://doi.org/10.1016/S0003-682X(00)00003-7
  • GlÈ, P.; Gourdon, E.; Arnaud, L. (2011) Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust., 72[5], 249-259. https://doi.org/10.1016/j.apacoust.2010.11.003
  • Bo, Z.; Tianning, C. (2009) Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust., 70[2], 337-346. https://doi.org/10.1016/j.apacoust.2008.03.004
  • Sgard, F. C.; Atalla, N.; Nicolas, J. (2000) A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. J. Acoust. Soc. Am., 108[6], 2865-2872. https://doi.org/10.1121/1.1322022
  • Xin, F. X.; Lu, T. J. (2010) Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption. Compos. Sci. Technol., 70[15], 2198-2206. https://doi.org/10.1016/j.compscitech.2010.09.001
  • Horoshenkov, K. V.; Swift, M. J. (2001) The acoustic properties of granular materials with pore size distribution close to log-normal. J. Acoust. Soc. Am., 110[5], 2371-2378. https://doi.org/10.1121/1.1408312 PMid:11757927
  • NP-EN 993-1:2000. (2000) Ensaio das propriedades geomÈtricas dos agregados, Parte 1: An·lise GranulomÈtrica, MÈtodo de PeneiraÁ"o, IPQ, Lisboa.
  • ISO 10534-2:2001. (2001) Acoustics determination of sound absorption coefficient and impedance in impedance tube: Part 2. Transfer-function method, ICS17.140.01
  • Bonfiglio, P.; Pompoli, F. (2007) Comparison of different inversion techniques for determining physical parameters of porous media. In ICA 2007[1-6]. International Congress of Acoustics.
  • Umnova, O.; Attenborough, K.; Li, K. M. (2000) Cell model calculations of dynamic drag parameters in packings of spheres. J. Acoust. Soc. Am., 107[6], 3113-3119. https://doi.org/10.1121/1.429340 PMid:10875357