De la estructura aditiva a la multiplicativaefecto de dos variables en el desarrollo del razonamiento proporcional

  1. Fernández Verdú, Ceneida
  2. Linares Mustarós, Salvador
Revista:
Journal for the Study of Education and Development, Infancia y Aprendizaje

ISSN: 0210-3702 1578-4126

Año de publicación: 2011

Volumen: 34

Número: 1

Páginas: 67-80

Tipo: Artículo

DOI: 10.1174/021037011794390111 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Journal for the Study of Education and Development, Infancia y Aprendizaje

Objetivos de desarrollo sostenible

Resumen

The study analyses the influence of multiplicative relationships between quantities, and its discrete or continuous nature in the development of primary school students' ability to discriminate proportional from additive situations. Results have shown that multiplicative relationships between quantities affect significantly primary school students' performance in both situations. However, the continuous or discrete nature of quantities only affects students' performance on proportional problems. Moreover, implicative statistical analysis shows the independence of students' performance on proportional and additive problems. These findings underline the complementarity of understanding proportional and additive relationships in developing the conceptualisation of the notion of ratio as a new unit.

Referencias bibliográficas

  • BEHR, M., HAREL, G., POST, T. & LESH, R. (1992). Rational number, ratio, and proportion. En D.A. Grouws (Ed.), Handbook of research on mathematics and teaching and learning (pp. 296-333). Nueva York: Macmillan Publishing.
  • BOYER, T. W., LEVINE, S. C. & HUTTENLOCHER, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44 (5), 1478-1490.
  • DE BOCK, D., VAN DOOREN, W., JANSSENS, D. & VERSCHAFFEL, L. (2007). The illusion of linearity: From analysis to improvement. Nueva York: Springer.
  • FERNÁNDEZ, A. (2009). Razón y Proporción. Un estudio en la escuela Primaria. Valencia: Universitat de València.
  • FERNÁNDEZ, C., LLINARES, S. & VALLS, J. (2008). Implicative analysis of strategies in solving proportional and non-proportional problems. En O. Figueras & A. Sepúlveda (Eds.), Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education and the XXX North American (vol. 3. pp. 1-8). Morelia: PME.
  • FERNÁNDEZ, C., LLINARES, S., VAN DOOREN, W., DE BOCK, D. & VERSCHAFFEL, L. (2009). Effect of the number structure and the quality nature on secondary school students' proportional reasoning. En M. Tzekaki, M. Kaldrimidou & C. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 25-32). Thessaloniki: PME.
  • FERNÁNDEZ, C., LLINARES, S., VAN DOOREN, W., DE BOCK, D. & VERSCHAFFEL, L. (2010). How do proportional and additive methods develop along Primary and Secondary school? En M.M.F. Pinto & T.F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 353-360). Belo Horizonte: PME.
  • FREUDENTHAL, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht/Boston/Lancaster: Reidel.
  • GRAS, R., SUZUKI, E., GUILLET, F. & SPAGNOLO, F. (Eds.) (2008). Statistical Implicative analysis. Theory and Applications. Londres: Springer.
  • HART, K. (1988). Ratio and proportion. En Hiebert, J. & Behr, M. (Eds.), Number concepts and operations in the middle grades (pp. 198-219). Reston, VA: National Council of Teachers of Mathematics and Erlbaum.
  • JEONG, Y., LEVINE, S. C. & HUTTENLOCHER, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8 (2), 237-256.
  • KIEREN, T. (1994). Multiple views of multiplicative structure. En G. Harel & J. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 387-397). Nueva York: State University of New York Press.
  • LAMON, S. (1994). Ratio and proportion: Cognitive foundations in unitizing and norming. En G. Harel & J. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. 89-122). Nueva York: State University of New York Press.
  • MISAILIDOU, C. & WILLIAMS, J. (2003). Diagnostic assessment of children's proportional reasoning. Journal of Mathematical Behavior, 22, 335-368.
  • MODESTOU, M. & GAGATSIS, A. (2007). Students' improper proportional reasoning: A result of the epistemological obstacle of "linearity". Educational Psychology, 27 (1), 75-92.
  • SINGER, J., KOHN, A. & RESNICK, L. (1997). Knowing about proportions in different contexts. En T. Nunes & P. Bryant (Eds.), Learning and Teaching Mathematics. An International Perspective (pp. 115-132). Londres: Psychology Press Ltd. Publishers.
  • TOURNIAIRE, F. & PULOS, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, 181-204.
  • TRIGUEROS, M. & COVADONGA, M. (2008). Los conceptos relevantes en el aprendizaje de la graficación. Un análisis a través de la estadística implicativa. Revista mexicana de Investigación Educativa, 13 (36), 50-85.
  • VAN DOOREN, W., DE BOCK, D., EVERS, M. & VERSCHAFFEL, L. (2009). Students' overuse of proportionality on missing-value problems: How numbers may change solutions. Journal for Research in Mathematics Education, 40 (2), 187-211.
  • VAN DOOREN, W., DE BOCK, D., HESSELS, A., JANSSENS, D. & VERSCHAFFEL, L. (2005). Not everything is proportional: Effects of age and problem type on propensities of overgeneralization. Cognition and Instruction, 23 (1), 57-86.
  • VERGNAUD, G. (1983). Multiplicative structures. En R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 127-174). Nueva York: Academic Press.