Aspectos atmosféricos y climáticos en la expansión de la pandemia (COVID-19) en la provincia de Alicante
- Jorge Olcina 1
- Samuel Biener Camacho 1
- Javier Martí Talavera 1
- 1 Universidad Alicante
ISSN: 0213-4691, 1989-9890
Año de publicación: 2020
Número: 73
Páginas: 275-297
Tipo: Artículo
Otras publicaciones en: Investigaciones Geográficas (España)
Resumen
The COVID-19 pandemic has become one of the biggest recent challenges that science has encountered. A multitude of studies aim to respond to the spread of this coronavirus, hitherto unknown, under certain atmospheric and climatic conditions. The study of parameters such as temperature, humidity, and radiation in the months of February and March 2020, as well as a correlative analysis with various other variables, aims to weigh the weight that these variables could have in the expansion of this pathogen in the province of Alicante. The results indicate, in a preliminary manner, that the only variable that is related to the contagion and death rates are the maximum temperatures. This fact could be related to the climatic niche of the coronavirus and could be decisive in its expansion worldwide. The lack of information on the above rates at municipal level, as well as the absence of mobility data on such a small scale, prevents the drawing of definitive conclusions
Referencias bibliográficas
- Agencia Estatal de Meteorología (AEMET). (2020a). Avance Climatológico de Febrero de 2020 en la Comunidad Valenciana. Recuperado de http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/ccaa/comunitat-valenciana/avance_climat_val_feb_2020.pdf
- Agencia Estatal de Meteorología (AEMET). (2020b). Primeros indicios de correlación entre variables meteorológicas y propagación de la enfermedad COVID-19 y del virus SARS-CoV-2 en España [Comunicado de prensa]. Recuperado de http://www.aemet.es/es/noticias/2020/04/Covid_variablesmeteorologicas_abril2020
- Agencia Estatal de Meteorología (AEMET). (s.d.). AEMET OpenData. Recuperado de https://opendata.aemet.es/
- Araújo, M. B., & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRxiv. https://doi.org/10.1101/2020.03.12.20034728
- Asociación Meteorológica del Sureste (AMETSE). (s.d.). RedMeteoSE. Recuperado de http://redmeteo.ametse.es/
- Asociación Valenciana de Metorología (AVAMET). (s.d.). MeteoXarxa. Recuperado de https://www.avamet.org/mx-meteoxarxa.php
- Ahmadi, M., Sharifi, A., Dorosti, S., Ghoushchi, S. J., & Ghanbari, N. (2020). Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of The Total Environment, 729, 138705. https://doi.org/10.1016/j.scitotenv.2020.138705
- Bäcker, A. (2020). Follow the Sun: Slower COVID-19 Morbidity and Mortality Growth at Higher Irradiances. SSRN. http://dx.doi.org/10.2139/ssrn.3567587
- Bashir, M. F., Ma, B. J., Bilal, Komal, B., Bashir, M. A., Farooq, T. H., ..., & Bashir, M. (2020a). Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environmental research, 187, 109652, in press. https://doi.org/10.1016/j.envres.2020.109652
- Bashir, M. F., Ma, B., Bilal, Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020b). Correlation between climate indicators and COVID-19 pandemic in New York, USA. The Science of the total environment, 728, 138835, in press. https://doi.org/10.1016/j.scitotenv.2020.138835
- Bukhari, Q., & Jameel, Y. (2020).Will Coronavirus Pandemic Diminish by Summer?. SSRN. http://dx.doi.org/10.2139/ssrn.3556998
- Caspi, G., Shalit, U., Kristensen, S.L., Aronson, D., Caspi, L., Rossenberg, O., ..., & Caspi, O. (2020). Cliamte effect on COVID-19 spread rate: an online surveillance tool. MedRxiv. https://doi.org/10.1101/2020.03.26.20044727
- Castilla, J., Guevara, M., García Cenoz, M., Reina, G., Martínez Artola, V., Zamora, ..., & Salcedo, E. (2011). Diferencias entre las ondas gripales de verano y de otoño durante la pandemia de gripe (H1N1) 2009 en Navarra. Revista Española de Salud Pública, 85, 47-56. Recuperado de https://www.scielosp.org/article/resp/2011.v85n1/47-56/
- CaixaBank Research (2020). Las segundas residencias en España: ¿mar o montaña? Informe sectorial inmobiliario. Primer semestre 2020. Recuperado de https://www.caixabankresearch.com/sites/default/files/documents/informesectorial-inmobiliario-1s2020-esp.pdf
- Centro Superior de Investigaciones Científicas (CSIC). (2020). Informe sobre la transmisión del SARS-CoV-2 en playas y piscinas. Recuperado de https://www.csic.es/sites/default/files/informe_playasypiscinas_csic.pdf
- Chan, K., Peiris, J., Lam, S., Poon, L., Yuen, K., & Seto, W. (2011). The effects of temperature and relative humidity on the viability of the SARS coronavirus. Advances in virology, 11(1), 734690. https://doi.org/10.1155/2011/734690
- Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environmental pollution (Barking, Essex: 1987), 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465
- Envejecimiento en red. (2015). Residencias en Alicante/Alacant. Datos actualizados en septiembre de 2015. Recuperado de http://envejecimiento.csic.es/documentos/recursos/residencias/alicante.xlsx
- European Centre for Medium-Range Weather Forecasts (ECWMF). (2020a). Surface air temperature for February 2020. Recuperado de https://climate.copernicus.eu/surface-air-temperature-february-2020
- European Centre for Medium-Range Weather Forecasts (ECWMF). (2020b). Climate Data Store - Monthly climate explorer for COVID-19. Recuperado de https://cds.climate.copernicus.eu/apps/c3s/app-c3s-monthly-climate-covid-19-explorer
- Fernández de Arróyabe Hernáez, P. (2004). La variación temporal y espacial de la tasa de gripe en España y su relación con diferentes parámetros atmosféricos durante el período 1997-2002. En J.C. García Codron, C. Diego Liaño, P. Fernández de Arróyabe Hernáez, C. Garmendia Pedraja y D. Rasilla Álvarez (Eds.), El clima entre el mar y la montaña (pp. 629-639). Santander: Asociación Española de Climatología. Recuperado de http://hdl.handle.net/20.500.11765/9069
- Ficetola, G.F., & Rubolini, D. (2020). Climate affects global patterns of COVID-19 early outbreak dynamics. MedRxiv. https://doi.org/10.1101/2020.03.23.20040501
- Foxman, E. F., Storer, J. A., Fitzgerald, M. E., Wasik, B. R., Hou, L., Zhao, H., ..., & Iwasaki, A. (2015). Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences, 112(3), 827-832. https://doi.org/10.1073/pnas.1411030112
- Gudbjartsson, D. F., Helgason, A., Jonsson, H., Magnusson, O. T., Melsted, P., Norddahl, G. L., …, & Stefansson, K. (2020). Spread of SARS-CoV-2 in the Icelandic Population. New England Journal of Medicine, 1-14. https://doi.org/10.1056/NEJMoa2006100
- Gutiérrez-Hernández, O., & García, L.V. (2020). ¿Influyen tiempo y clima en la distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una perspectiva biogeográfica. Investigaciones Geográficas, in press. https://doi.org/10.14198/INGEO2020.GHVG
- Instituto de Salud Carlos III. (2019). La contaminación del aire, protagonista del Día Mundial del Medio Ambiente: muertes prematuras evitables [Comunicado de prensa]. Recuperado de https://repisalud.isciii.es/bitstream/20.500.12105/7937/1/2019_06_04_LaContaminaci%c3%b3nDelAire.pdf
- Instituto Valenciano de Investigaciones Agrarias (IVIA). (s.d.). RiegosIVIA. Recuperado de http://riegos.ivia.es/datos-meteorologicos
- Lavezzo, E., Franchin, E., Ciavarella, C., Cuomo-Dannenburg, G., Barzon, L., Sciero, M., …, & Alessandra, R. (2020). Suppressión of COVID-19 outbreack in the municipality of Vo, Italy. MedRxiv. https://doi.org/10.1101/2020.04.17.20053157
- León-Gómez, I., Delgado-Sanz, C., Jiménez-Jorge, S., Flores, V., Simón, F., Gómez-Barroso, D., …, & de Mateo Ontañón, S. (2015). Exceso de mortalidad relacionado con la gripe en España en el invierno de 2012. Gaceta Sanitaria, 29(4), 258-265. https://doi.org/10.1016/j.gaceta.2015.01.011
- Lin, K., Fong, D. Y. T., Zhu, B., & Karlberg, J. (2005). Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection. Epidemiology & Infection, 134(2), 223-230. https://doi.org/10.1017/S0950268805005054
- Lowen, A. C., Mubareka, S. Steel, J., & Palese, P. (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog, 3(10), e151. https://doi.org/10.1371/journal.ppat.0030151
- Luo, W., Majumder, M., Liu, D. Poirier, C., Mandl, KD., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRxiv. https://doi.org/10.1101/2020.02.12.20022467
- Mazzoli, M., Mateo, D., Hernando, A., Meloni, S., & Ramasco, J.J. (2020). Effects of mobility and multi-seeding on the propagation of the COVID-19 in Spain. MedRxiv. https://doi.org/10.1101/2020.05.09.20096339
- Ministerio de Fomento, Movilidad y Agenda Urbana. (2018). Observatorio de Transporte y la Logística de España. Estudio Piloto de Movilidad Interprovincial. Recuperado de https://observatoriotransporte.mitma.es/estudio-experimental
- Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of the Total Environment, 726, 138605. https://doi.org/10.1016/j.scitotenv.2020.138605
- Organización Mundial de la Salud (OMS). (2006). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. Resumen evaluación de riesgos. Recuperado de https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=695A37D2DD8EC724346349C3E72D5416?sequence=1
- Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D., & Li, Y. (2020). Indoor transmission of SARS-CoV-2. MedRxiv. https://doi.org/10.1101/2020.04.04.20053058
- Sajadi, M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN. http://dx.doi.org/10.2139/ssrn.3550308
- Van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 20590. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590
- Wang, J., Tang, K., Feng, K., & Lv, W. (2020a). High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN. http://dx.doi.org/10.2139/ssrn.3551767
- Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, C., …, & Li, H. (2020b). Temperature significant change COVID-19 Transmission in 429 cities. MedRxiv. https://doi.org/10.1101/2020.02.22.20025791
- Wu, X., Nethery, R.C., Sabath, B.M., Braun, D. & Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MedRxiv. https://doi.org/10.1101/2020.04.05.20054502