Clasificación de objetos usando percepción bimodal de palpación única en acciones de agarre robótico
- 1 Universidad de las Fuerzas Armadas ESPE
-
2
Universitat d'Alacant
info
ISSN: 1697-7920
Year of publication: 2020
Volume: 17
Issue: 1
Pages: 44-55
Type: Article
More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )
Sustainable development goals
Abstract
This work presents a method to classify grasped objects with a multi-fingered robotic hand combining proprioceptive and tactile data in a hybrid descriptor. The proprioceptive data are obtained from the joint positions of the hand and the tactile data are obtained from the contact registered by pressure cells installed on the phalanges. The proposed approach allows us to identify the grasped object by learning the contact geometry and stiness from the readings by sensors. In this work, we show that using bimodal data of different nature along with supervised learning techniques improves the recognition rate. In experimentation, more than 3000 grasps of up to 7 dierent domestic objects have been carried out, obtaining an average F1 score around 95 %, performing just a single grasp. In addition, the generalization of the method has been verified by training our system with certain objects and classifying new, similar ones without any prior knowledge.
Funding information
Este trabajo ha sido financiado con Fondos Europeos de Desarrollo Regional (FEDER), Ministerio de Econom?a, Industria y Competitividad a trav?s del proyecto DPI2015-68087-R y la ayuda pre-doctoral BES-2016-078290, y tambi?n gracias al apoyo de la Comisi?n Europea y del programa Interreg V. Sudoe a trav?s del proyecto SOE2/P1/F0638.Funders
-
- BES-2016-078290
Bibliographic References
- Bae, J., Park, S., Park, J., Baeg, M., Kim, D., Oh, S., Oct 2012. Development of a low cost anthropomorphic robot hand with high capability. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4776-4782. https://doi.org/10.1109/IROS.2012.6386063
- Baishya, S. S., Bäuml, B., Oct 2016. Robust material classification with a tactile skin using deep learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8-15. https://doi.org/10.1109/IROS.2016.7758088
- Bergquist, T., Schenck, C., Ohiri, U., Sinapov, J., Griffith, S., Stoytchev, E., 2009. Interactive object recognition using proprioceptive feedback. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)-Workshop: Semantic Perception for Robot Manipulation. URL: http://www.willowgarage.com/iros09spmm
- Bishop, C., 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York.
- Cervantes, J., Taltempa, J., Lamont, F. G., Castilla, J. S. R., Rendon, A. Y., Jalili, L. D., 2017. Análisis comparativo de las técnicas utilizadas en un sistema de reconocimiento de hojas de planta. Revista Iberoamericana de Automática e Informática Industrial 14 (1), 104-114. https://doi.org/10.1016/j.riai.2016.09.005
- Delgado, A., Corrales, J., Mezouar, Y., Lequievre, L., Jara, C., Torres, F., 2017. Tactile control based on gaussian images and its application in bi-manual manipulation of deformable objects. Robotics and Autonomous Systems 94, 148 - 161. https://doi.org/10.1016/j.robot.2017.04.017
- Glorot, X., Bordes, A., Bengio, Y., 11-13 Apr 2011. Deep sparse rectifier neural networks. In: Gordon, G., Dunson, D., Dudík, M. (Eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Vol. 15 of Proceedings of Machine Learning Research. PMLR, Fort Lauderdale, FL, USA, pp. 315-323. URL: http://proceedings.mlr.press/v15/glorot11a.html
- Guo, D., Kong, T., Sun, F., Liu, H., May 2016. Object discovery and grasp detection with a shared convolutional neural network. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 2038-2043. https://doi.org/10.1109/ICRA.2016.7487351
- Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference and prediction. Springer-Verlag New York. https://doi.org/10.1007/978-0-387-84858-7
- Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., Sep. 2015. Haptic identification of objects using a modular soft robotic gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1698-1705. https://doi.org/10.1109/IROS.2015.7353596
- Homberg, B. S., Katzschmann, R. K., Dogar, M. R., Rus, D., Mar 2019. Robust proprioceptive grasping with a soft robot hand. Autonomous Robots 43 (3), 681-696. https://doi.org/10.1007/s10514-018-9754-1
- Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on International Conference on Machine Learning. Vol. 15. JMLR, pp. 448-456.
- Kang, L., Ye, P., Li, Y., Doermann, D., June 2014. Convolutional neural networks for no-reference image quality assessment. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1733-1740. https://doi.org/10.1109/CVPR.2014.224
- Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI'95. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1137-1143. URL: http://dl.acm.org/citation.cfm?id=1643031.1643047
- Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. NIPS'12. Curran Associates Inc., USA, pp. 1097-1105. URL: http://dl.acm.org/citation.cfm?id=2999134.2999257
- Liu, H., Wu, Y., Sun, F., Guo, D., 2017a. Recent progress on tactile object recognition. International Journal of Advanced Robotic Systems 14 (4), 1729881417717056. https://doi.org/10.1177/1729881417717056
- Liu, H., Yu, Y., Sun, F., Gu, J., 2017b. Visual-tactile fusion for object recognition. IEEE Transactions on Automation Science and Engineering 14 (2), 996-1008. https://doi.org/10.1109/TASE.2016.2549552
- Montano, A., Su'arez, R., 2013. Object shape reconstruction based on the object manipulation. 2013 16th International Conference on Advanced Robotics, ICAR 2013, 1-6. https://doi.org/10.1109/ICAR.2013.6766571
- Nasrabadi, N. M., 2007. Pattern recognition and machine learning. Journal of Electronic Imaging 16 (4). https://doi.org/10.1117/1.2819119
- National Instruments, 2018. The LabView website. http://www.ni.com/en-us/shop/labview.html, online; accedido 05 Noviembre 2018.
- Navarro, S. E., Gorges, N.,Wörn, H., Schill, J., Asfour, T., Dillmann, R., March 2012. Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium (HAPTICS). pp. 497-502. https://doi.org/10.1109/HAPTIC.2012.6183837
- Pascanu, R., Montufar, G., Bengio, Y., April 2014. On the number of inference regions of deep feed forward networks with piece-wise linear activations. In: International Conference on Learning Representations (ICLR). URL: https://arxiv.org/abs/1312.6098
- Pezzementi, Z., Plaku, E., Reyda, C., Hager, G. D., June 2011. Tactile-object recognition from appearance information. IEEE Transactions on Robotics 27 (3), 473-487. https://doi.org/10.1109/TRO.2011.2125350
- Powers, D. M. W., 2011. Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies 2 (1), 37-63.
- Quigley, M., Conley, K., Gerkey, B., J.Faust, Foote, T., Leibs, J., Wheeler, R., Ng, A., May 2009. Ros: an open-source robot operating system. In: IEEE International Conference on Robotics and Automation (ICRA): Workshop on Open Source Software. URL: http://www.willowgarage.com/papers/ros-open-source-robot-operating-system
- Reinecke, J., Dietrich, A., Schmidt, F., Chalon, M., May 2014. Experimental comparison of slip detection strategies by tactile sensing with the biotac on the dlr hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA). pp. 2742-2748. https://doi.org/10.1109/ICRA.2014.6907252
- Rispal, S., Rana, A. K., Duchaine, V., 2017. Texture roughness estimation using dynamic tactile sensing. 2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017, 555-562. https://doi.org/10.1109/ICCAR.2017.7942759
- Sanchez, J., Corrales, J.-A., Bouzgarrou, B.-C., Mezouar, Y., 2018. Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey. The International Journal of Robotics Research 37 (7), 688-716. https://doi.org/10.1177/0278364918779698
- Schmitz, A., Bansho, Y., Noda, K., Iwata, H., Ogata, T., Sugano, S., Nov 2014. Tactile object recognition using deep learning and dropout. In: 2014 IEEERAS International Conference on Humanoid Robots. pp. 1044-1050. https://doi.org/10.1109/HUMANOIDS.2014.7041493
- Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard,W., Oct 2009. Object identification with tactile sensors using bag-of-features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 243-248. https://doi.org/10.1109/IROS.2009.5354648
- Shalabi, L., Shaaban, Z., Kasasbeh, B., David, M., 2006. Data mining: A preprocessing engine. Journal of Computer Science 2 (9), 735-739. https://doi.org/10.3844/jcssp.2006.735.739
- Sinapov, J., Bergquist, T., Schenck, C., Ohiri, U., Griffith, S., Stoytchev, A., 2011. Interactive object recognition using proprioceptive and auditory feedback. The International Journal of Robotics Research 30 (10), 1250-1262. https://doi.org/10.1177/0278364911408368
- Spiers, A. J., Liarokapis, M. V., Calli, B., Dollar, A. M., apr 2016. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors. IEEE Transactions on Haptics 9 (2), 207-220. URL: http://ieeexplore.ieee.org/document/7390277/ https://doi.org/10.1109/TOH.2016.2521378
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15, 1929-1958. URL: http://jmlr.org/papers/v15/srivastava14a.html
- Tekscan, 2018. The Tekscan website. https://www.tekscan.com, online; accedido 05 Noviembre 2018.
- Velasco-Sanchez, 2018. Base de datos de agarres con Allegro y Tekscan. https://github.com/EPVelasco/Descriptores de agares, online; accedido 05 Noviembre 2018.
- Velasco-Sanchez, E., Zapata-Impata, B. S., Gil, P., Torres, F., 2018. Reconocimiento de objetos agarrados con sensorizado híbrido propioceptivo-táctil. In: XXXIX Jornadas de Automática. CEA-IFAC, pp. 224-232. URL: https://www.eweb.unex.es/eweb/ja2018/actas.html
- Vásquez, A., Perdereau, V., 2017. Proprioceptive shape signatures for object manipulation and recognition purposes in a robotic hand. Robotics and Autonomous Systems 98, 135 - 146. URL: http://www.sciencedirect.com/science/article/pii/S092188901630700X https://doi.org/10.1016/j.robot.2017.06.001
- Zapata-Impata, B. S., Gil, P., Torres, F., 2018. Non-matrix tactile sensors: How can be exploited their local connectivity for predicting grasp stability? In: IEEE/RSJ International Conference on Intelligent Robots And Systems (IROS). Workshop on Robotac: New Progress in Tactile Perception And Learning in Robotics. IEEE. URL: https://arxiv.org/abs/1809.05551
- Zapata-impata, B. S., Gil, P., Torres, F., 2019. Learning Spatio Temporal Tactile Features with a ConvLSTM for the Direction Of Slip Detection. Sensors 19 (3), 1-16. URL: https://www.mdpi.com/1424-8220/19/3/523 DOI: 10.3390/s19030523 https://doi.org/10.3390/s19030523