Gestión de resúmenes para dispositivos móviles

  1. Patricio Martínez
  2. Yoan Gutiérrez
  3. Fernando Llopis
  4. José Gómez
  5. Elena Lloret
Revue:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Année de publication: 2016

Número: 57

Pages: 13-23

Type: Article

D'autres publications dans: Procesamiento del lenguaje natural

Résumé

In democratic countries, forecasting the voting intentions of citizens and knowing their opinions on major political parties and leaders is of great interest to the parties themselves, to the media, and to the general public. Traditionally, expensive polls based on personal interviews have been used for this purpose. The rise of social networks, particularly Twitter, allows us to consider them as a cheap alternative. In this paper, we review the relevant scientific bibliographic references in this area, with special emphasis on the Spanish case.

Références bibliographiques

  • Abulaish, M., Jahiruddin, Doja, M., and Ahmad, T. (2009). Feature and opinion mining for customer review summarization. In Chaudhury, S., Mitra, S., Murthy, C., Sastry, P., and Pal, S., editors, Pattern Recognition and Machine Intelligence, volume 5909 of Lecture Notes in Computer Science, pages 219–224. Springer Berlin Heidelberg.
  • Baccianella, A. E. S. and Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources Association (ELRA).
  • Giv´on, T. (1990). Syntax: A functionaltypological introduction, II. John Benjamins.
  • Glickman, O. (2006). Applied Textual Entailment. PhD thesis. Kaszkiel, M. and Zobel, J. (1997). Passage Retrieval Revisited. In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Text Structures, pages 178–185, Philadelphia, PA, USA.
  • Kokkoras, F., Lampridou, E., Ntonas, K., and Vlahavas, I. (2008). Mopis: A multiple opinion summarizer. In Darzentas, J., Vouros, G., Vosinakis, S., and Arnellos, A., editors, Artificial Intelligence: Theories, Models and Applications, volume 5138 of Lecture Notes in Computer Science, pages 110–122. Springer Berlin Heidelberg.
  • Llopis, F. and Vicedo, J. L. (2001). IR-n system, a passage retrieval system at CLEF 2001. In Workshop of Cross-Language Evaluation Forum (CLEF 2001), Lecture notes in Computer Science, pages 244–252, Darmstadt, Germany. SpringerVerlag.
  • Lloret, E. and Palomar, M. (2012). COMPENDIUM: a text summarisation tool for generating summaries of multiple purposes, domains, and genres. Natural Language Engineering, 19(02):147–186. Ly, D. K., Sugiyama, K., Lin, Z., and Kan,
  • M.-Y. (2011). Product review summarization from a deeper perspective. In Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, JCDL ’11, pages 311–314, New York, NY, USA. ACM.
  • Sakai, T. (2007). On the reliability of information retrieval metrics based on graded relevance. IP&M, 43(2):531–548.
  • Salton, G. A. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison Wesley, New York.