From Sentences to DocumentsExtending Abstract Meaning Representation for Understanding Documents

  1. Paloma Moreda
  2. Armando Suárez
  3. Elena Lloret
  4. Estela Saquete
  5. Isabel Moreno
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2018

Número: 60

Páginas: 61-68

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

The overabundance of information and its heterogeneity requires new ways to access, process and generate knowledge according to the user's needs. To define an appropriate formalism to represent textual information capable to allow machines to perform language understanding and generation will be crucial for achieving these tasks. Abstract Meaning Representation (AMR) is foreseen as a standard knowledge representation that can capture the information encoded in a sentence at various linguistic levels. However, its scope only limits to a single sentence, and it does not benefit from additional semantic information that could help the generation of different types of texts. Therefore, the aim of this paper is to address this limitation by proposing and outlining a method that can extend the information provided by AMR and use it to represent entire documents. Based on our proposal, we will determine a unique, invariant and independent standard text representation, called canonical representation. From it and through a transformational process, we will obtain different text variants that will be appropriate to the users' needs.

Información de financiación

Research partially supported by the Spanish Government (grants TIN2015-65100-R; TIN2015-65136-C02-2-R).

Financiadores

    • TIN2015-65100-R

Referencias bibliográficas

  • Banarescu, L., C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and N. Schneider. 2013. Abstract meaning representation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pages 178–186, Sofia, Bulgaria, August. Association for Computational Linguistics.
  • Clark, K. and C. D. Manning. 2015. Entitycentric coreference resolution with model stacking. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1405–1415, Beijing, China, July. Association for Computational Linguistics.
  • Damonte, M., S. B. Cohen, and G. Satta. 2017. An incremental parser for abstract meaning representation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 536–546, Valencia, Spain, April. Association for Computational Linguistics.
  • Dohare, S. and H. Karnick. 2017. Text summarization using abstract meaning representation. CoRR, abs/1706.01678.
  • Flanigan, J., C. Dyer, N. A. Smith, and J. Carbonell. 2016. Generation from abstract meaning representation using tree transducers. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 731–739, San Diego, California, June. Association for Computational Linguistics.
  • Flanigan, J., S. Thomson, J. Carbonell, C. Dyer, and N. A. Smith. 2014. A discriminative graph-based parser for the abstract meaning representation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1426– 1436, Baltimore, Maryland, June. Association for Computational Linguistics.
  • Goodman, J., A. Vlachos, and J. Naradowsky. 2016. Noise reduction and targeted exploration in imitation learning for abstract meaning representation parsing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1–11, Berlin, Germany, August. Association for Computational Linguistics.
  • Langkilde, I. and K. Knight. 1998. Generation that exploits corpus-based statistical knowledge. In COLING-ACL ’98, Proceedings of the Conference, pages 704 –710, Montreal, Canada, August. Association for Computational Linguistics.
  • Liu, F., J. Flanigan, S. Thomson, N. Sadeh, and N. A. Smith. 2015. Toward abstractive summarization using semantic representations. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1077–1086, Denver, Colorado, May–June. Association for Computational Linguistics.
  • Llorens, H., E. Saquete, and B. NavarroColorado. 2013. Applying Semantic Knowledge to the Automatic Processing of Temporal Expressions and Events in Natural Language. Information Processing & Management, 49(1):179–197.
  • Martínez-Barco, P., A. F. Rodríguez, D. Tomás, E. Lloret, E. Saquete, F. Llopis, J. Peral, M. Palomar, J. M. G. Soriano, and M. T. Romà-Ferri. 2013. LEGOLANG: técnicas de deconstrucción aplicadas a las tecnologías del lenguaje humano. Procesamiento del Lenguaje Natural, 51:219–222.
  • Moro, A., F. Cecconi, and R. Navigli. 2014. Multilingual word sense disambiguation and entity linking for everybody. In Proceedings of the 2014 International Conference on Posters & Demonstrations Track Volume 1272, ISWC-PD’14, pages 25–28, Aachen, Germany, Germany. CEUR-WS.org.
  • Navarro-Colorado, B. and E. Saquete. 2016. Cross-document event ordering through temporal, lexical and distributional knowledge. Knowl.-Based Syst., 110:244–254.
  • Pourdamghani, N., K. Knight, and U. Hermjakob. 2016. Generating english from abstract meaning representations. In Proceedings of the 9th International Natural Language Generation conference, pages 21–25, Edinburgh, UK, September 5-8. Association for Computational Linguistics.
  • Saphra, N. and A. Lopez. 2015. Amrica: an amr inspector for cross-language alignments. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pages 36–40, Denver, Colorado, June. Association for Computational Linguistics.
  • Schuler, K. K. 2006. VerbNet: A BroadCoverage, Comprehensive Verb Lexicon. Ph.D. thesis, University of Pennsylvania.
  • UzZaman, N., H. Llorens, L. Derczynski, J. Allen, M. Verhagen, and J. Pustejovsky. 2013. Semeval-2013 task 1: Tempeval-3: Evaluating time expressions, events, and temporal relations. In Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 1–9, Atlanta, Georgia, USA. ACL. ISBN: 978-1-937284-49-7.
  • Vanderwende, L., A. Menezes, and C. Quirk. 2015. An amr parser for english, french, german, spanish and japanese and a new amr-annotated corpus. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pages 26–30, Denver, Colorado, June. Association for Computational Linguistics.
  • Zhou, J., F. Xu, H. Uszkoreit, W. QU, R. Li, and Y. Gu. 2016. Amr parsing with an incremental joint model. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 680–689, Austin, Texas, November. Association for Computational Linguistics.