Metodología para la predicción de puntos de riesgos múltiples en infraestructuras viarias tras episodios torrenciales (road-risk)

  1. Perles Roselló, María Jesús 1
  2. Pardo García, Santiago Manuel 1
  3. Mérida Rodríguez, Matías 1
  4. Olcina Cantos, Jorge 2
  1. 1 Universidad de Málaga (España)
  2. 2 Universidad de Alicante (España)
Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426 2605-3322

Año de publicación: 2019

Número: 80

Tipo: Artículo

DOI: 10.21138/BAGE.2615 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: BAGE. Boletín de la Asociación Española de Geografía

Objetivos de desarrollo sostenible

Resumen

Se presentan los contenidos de una metodología que permite predecir y cartografiar aquellos puntos en el recorrido de una infraestructura viaria susceptibles de quedar bloqueados por riesgos tras episodios de precipitación torrencial. Se consideran los riesgos de movimiento en masa, subsidencia del firme, generación de balsas e inundación por desbordamiento de cauces aledaños. Para estimar las consecuencias en cada punto, se evalúan tanto factores de peligrosidad como de vulnerabilidad del medio humano frente al potencial corte de tráfico. Se ha diseñado, además, una aplicación informática que implementa la metodología obtenida y facilita su aplicación a otros casos.

Información de financiación

Por las particularidades de la producción del riesgo en las infraestructuras viarias, se observa la necesidad de idear metodologías multi-peligrosidad y multi-riesgo para el tratamiento unitario del problema en estos espacios, métodos de enfoque holístico frente al sectorial, que integren peligros de distinto origen, causas naturales y/o artificiales y factores de peligrosidad, junto a los de vulnerabilidad. Se detecta un vacío en este tipo de metodologías, ya que los enfoques integrales han sido tratados en literatura más de una forma teórica que aplicada (Cutter, 1994), y en otras ocasiones han sido enfocados desde una escala de trabajo más divulgativa que aplicable (Greiving, Fleischauer & Lückenköter, 2004). Junto a este vacío, diversos autores apuntan el actual contexto de oportunidad para las metodologías predictivas de apoyo a la prevención de desastres en las consideradas “infraestructuras críticas” (Zhao, Li & Fang, 2018), metodologías que están adquiriendo una especial significación y trascendencia en el contexto de la promulgación de leyes específicas para la Protección de Infraestructuras Críticas, tanto a nivel europeo (2008/114 CE), como español (Ley 8/2011), y de la creación del Centro Nacional para la Protección de Infraestructuras Críticas. De igual modo, trabajos recientes indican la necesidad de este tipo de enfoques ante el previsible incremento de los riesgos en las infraestructuras críticas en un escenario de cambio climático (Rsavdaroglou et al., 2018; Petrucci & Pasqua, 2012; Cutter et al., 2018).

Financiadores

Referencias bibliográficas

  • Ardizzone, E., Cardinali, M., Carrara, A., Guzzetti, F., & Reichenbach, P. (2002). Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Sciences, 2, 3–14.
  • Ataollah, S., Lee, S., Oh, H., & Kamran, C. (2012). A GIS-based logistic regression model in rock fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazards, 64, 1639–1656. http://dx.doi.org/10.1007/s11069-012-0321-3
  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.
  • Barredo, J. I., Benavides, A., Hervás, J., & Van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment tecniques using GIS in the Tirajana basin, Gran Canaria island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9–23. https://doi.org/10.1016/S0303-2434(00)85022-9
  • Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (1994). At Risks: Natural Hazards, People Vulnerability and Disasters. Routledge.
  • Bornaetxea, T., Ormaetxea, O., & Antigüedad, I. (2016). Modelo de susceptibilidad de deslizamientos superficiales para la cuenca del río Oria (Guipuzcoa). Aplicación de la regresión logística y comparación de resultados con estudios precedentes. In J. J. Durán, M. Montes, A. Robador & A. Salazar (Eds.), Comprendiendo el relieve: del pasado al futuro. Actas de la XIV Reunión Nacional de Geomorfología. Madrid.
  • Brice, J. C. (2001) [1984]. Assessment of Channel Stability at Bridge Sites. Transportation Research Record, Vol. 2, No. 950, Transportation Research
  • Board, Washington, D.C. 20418. In F. Calvo García-Tornell, Sociedades y territorios en riesgo. Barcelona: Ediciones del Serbal.
  • Calvo García-Tornell, F. (2001). Sociedades y territorios en riesgo. Barcelona: Ediciones del Serbal.
  • Camarasa Belmonte, A. M, & Soriano García, J. (2008). Peligro, vulnerabilidad y riesgo de inundación en ramblas mediterráneas. Los llanos de Carraixet y Poyo. Cuadernos de Geografía, 83, 1–26.
  • Carrasco, R. M., Pedraza, J., Martín Duque, J. F., Mattera, M., Sanz M. A., Bodoque, J. M., & Diez Herrero, A. (2003). Cartografía de zonas de susceptibilidad o propensión a los movimientos en masa en el Valle del Jerte (Sistema Central Español). In F. J. Ayala-Carcedo & J. Corominas (Ed.). Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG. Fundamentos y Aplicaciones en España (pp. 133–153). Madrid: Publicaciones del Instituto Geológico y Minero de España.
  • Casale, R., & Margotinni, C. (1999). Flood and landslides: Integrated Risk Assesment. Germany: Ed. Springer Science & Bussines Media.
  • Chacón, J., Irigaray, C., Fernández del Castillo, T., & El Hamdouni, R. (2003). Susceptibilidad a los movimientos de ladera en el sector central de la Cordillera Bética. In F.J. Ayala Carcedo & J. Corominas, (Eds.), Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG. Fundamentos y Aplicaciones en España (pp. 83–96). Madrid: Publicaciones del Instituto Geológico y Minero de España.
  • Chau K., Tang Y., & Wong R. (2004). GIS-Based Rock-fall susceptibility map for Hong Kong. International Journal of Rock Mechanics and Mining Sciences, 41(3), 530–542.
  • Clark, G. E., Moser, S. C., Ratick, S. J., Dow, K., Meyer, W. B., Emani, S., … Scharz, H. E. (1998). Assessing the vulnerability of coastal communities to extreme storms: the case of Revere, M A, USA. Mitigation and Adaptation Strategies for Global Change, 3(1), 59–82. https://doi.org/10.1023/A:1009609710795
  • Conesa-García, C., García-Lorenzo, R., & Pérez-Cutillas, P. (2017). Flood hazards at ford stream crossings on ephemeral channels (south-east coast of Spain). Hydrological Processes, 31, 731–749. https://doi.org/10.1002/hyp.11082
  • Conesa García, C., & García Lorenzo, R. (2014). Flood hazard assessment for bridge crossings over ephemeral channels: A case study of the Murcia Coast (SE Spain). Cuadernos de Investigación Geográfica, 40(1), 117–143. https://doi.org/10.18172/cig.2507
  • Conesa García, C., & García Lorenzo, R. (2013). Evaluating the effectiveness of road-crossing drainage culverts in ephemeral streams. Hydrological Processes, 27(12), 1781–1796. https://doi.org/10.1002/hyp.9335
  • Corominas, J., Ibarbia, I., Luzuriaga, S., Navarro, J. A., Jujo, I., Jurnet, C., & Hurlimann, M. (2013). Rockfall and debris flow hazard assesment of the coastal road of Guipuzkoa (Northern Spain). In C. Margottini, P. Canuti, K. Sassa (Eds.), Landslides Science and Practice, vol. 6, Risk Assesment, Management and Mitigation. Germany: Springer.
  • Cutter, S., Emrich, C., Gale, M., & Reeves, R. (2018). Flash Flood Risk and the Paradox of Urban Development. Natural Hazards Review, 19(1). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000268
  • Cutter, S.; Boruff, B., & Shirley, W. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.
  • Cutter, S. (1994). Environmental Risk and Hazards. Englewood Cliffs, Prentice-Hall.
  • Delmonaco G., Garbin F., Marsella M., Margottini C., Sonnessa A., & Spizzichino D. (2013). Laser Scanning Analysis and Landslide Risk Assessment on Transportation Network: The Lugnano in Teverina (Umbria Region, Italy), Landslide Case Study. In C. Margottini, P. Canuti, K. Sassa (Eds.), Landslide Science and Practice. Berlin: Springer.
  • Delmonaco, G., Margottini, C., & Spizzino, D. (2006). Report on new methodology for multi-risk assesment and the harmonisation fo different natural risk maps. ARMONÍA Proyect: Applied multi-risk mapping of Natural Hazards for Impact Assessment. Deliverable 3.1. European Community.
  • Diez Herrero, A., Laín Huerta, L., & Llorente Isidro, M. (2008). Mapas de peligrosidad por avenidas e inundaciones. Guía metodológica para su elaboración. Madrid: Publicaciones del IGME.
  • Felicísimo, A., Cuartero, A., Remondo, R., & Quirós, E. (2013). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2), 175–189.
  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102, 99–111. https://doi.org/10.1016/j.enggeo.2008.03.022
  • Furniss, M. J., Ledwith, T. S., Love, M. A., McFadin, B. C., & Flanagan, S. A. (1998). Response of Road-stream Crossings to Large Flood Events in Washington, Oregon, and Northern California. United States Department of Agriculture. Forest Service – San Dimas Technology and Development Center.
  • González-Jiménez, R. M., Carrasco, F. J., Ayala Carcedo, Pedraza Gilsanz, J., Martín-Duque, J. F., Sanz, M. A., & Bodoque, J. M. (2007). El análisis de la susceptibilidad en la prevención de los movimientos de ladera: un análisis comparativo de las metodologías aplicadas al Valle del Jerte (Sistema Central español). In F.J. Ayala Carcedo, J. Olcina Cantos, L. Laín Huerta & A. González Jiménez (Eds.), Riesgos naturales y desarrollo sostenible. Impacto, predicción y mitigación (pp. 221–246). Madrid: IGME.
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181–216
  • Greiving, S., Fleischhauer, M., & Lückenkötter, J. (2004). Dealing with hazards: Multi risk mapping of Europe’s regions and its policy implications. Grenoble, France: AESOP.
  • Hosmer Jr, D. W., & Lemeshow, S. (2004). Applied logistic regression. Oxford: John Wiley & Sons.
  • Ikeya, H. (1989). Debris flow and its countermeasures in Japan. Bulletin of the International Association of Engineering Geology, 40(1), 15–33.
  • Jones, J. A., Swanson, F. J., Wemple, B. C., & Snyder, K. U. (2000). Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology, 14(1), 76–85.
  • Lagasse, P. F., Schall, J. D., & Richarson, E. V. (2012). Stream Stability at Highway Structures. Hydraulic Engineering Circular 20, Publication No. FHWA-HIF-12-004. Federal Highway Administration, U.S. Department of Transportation, Washington DC. Retrieved from https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif12004.pdf
  • Lexer, W., Paluchova, K., & Schwarzl, B. (2006). Risk Assessment. IMProving the IMPlementation of Environmental IMPact Assessment, (IMP)3. Risk Assessment D 3.2 Report WP 3. Vienna: Österreichisches Institut für Raumplanung.
  • Llorente Isidro, M., Díez Herrero, A., & Laín Huerta, L. (2006). La experiencia del IGME en cartografía de peligrosidad de avenidas torrenciales e inundaciones: de Casiano de Prado a PRIGEO. In A. Díez Herreros, L. Laín Huerta, & M. Llorente Isidro, M. (Eds), Mapas de peligrosidad de avenidas e inundaciones. Métodos, experiencias y aplicación (pp. 41–63). Madrid: Publicaciones del Instituto Geológico y Minero de España.
  • Luce, C. H., & Wemple, B.C. (2001). Introduction to special issue on hydrologic and geomorphic effects of forest roads. Earth Surface Processes and Landforms, 26, 111–113.
  • Máyer Suárez, P. (2002). Desarrollo urbano e inundaciones en la ciudad de Las Palmas de Gran Canaria (1869–2000). Investigaciones geográficas, 28, 145–159.
  • Mérida Rodriguez, M., Perles Roselló, M. J., & Blanco Sepúlveda, R. (1998). Urbanización, infraestructuras y riesgos naturales en la periferia montañosa de la ciudad de Málaga. El caso del monte San Antón. Revista Baética, 20,129–157. http://dx.doi.org/10.24310/BAETICA.1998.v0i20.511
  • Montz, B. E. (1994). Methodologies for analysis of multiple hazard probabilities: An application in Rotura, New Zealand. Centre for Environmental and Resource Studies, University of Waikato, Hamilton.
  • Nilsen, M. W. (2008). Modelling of rockfall runout range: employing empirical and dinamical methods (Master Thesis, Universitetet i Oslo, Norway). Retrieved from http://urn.nb.no/URN:NBN:no-19773
  • Olcina Cantos, J. (2008). Cambios en la consideración territorial, conceptual y de método de los riesgos naturales. In X Coloquio Internacional de Geocrítica, Diez años de cambios en el mundo, en la Geografía y en las ciencias sociales, 1999–2008. Barcelona, 26 - 30 de mayo de 2008. Retrieved from http://www.ub.es/geocrit/-xcol/62.htm
  • Olcina Cantos, J., & Ayala Carcedo, F. J. (2002). Riesgos naturales. Madrid: Ariel.
  • Olcina Cantos, J., & Diez Herrero, A. (2017). Cartografía de inundaciones en España. Revista Estudios Geográficos, 78(282), 283–315.
  • Olcina Cantos, J., Sauri, D., Hernández, M., & Ribas, A. (2016). Flood policy in Spain: a review for the period 1983-2013. Disaster Prevention and Management: an International Journal, 25(1), 41–58.
  • Ollero Ojeda, A. (2014). Guía metodológica sobre buenas prácticas en gestión de inundaciones (Manual para gestores). Contrato del río Matarraña. Zaragoza: Fundación Ecología y Desarrollo. Retrieved from: http://contratoderiomatarranya.org/documentos/Guia_BB_Gestion_inundaciones.pdf
  • Pedraza, J., Carrasco, R. M., Bodoque, J. M., Sanz, M. A., Martín-Duque, J. F., González, A., & Díez, A. (2004). The Jubaguerra stream event: analysis of a mass movement connected with a flash flood phenomenon and its application to other areas in the Gredos Mountains (Central Spain). In C. A. Brebbia (Ed.), Risk Analysis IV (pp. 345–358). Southampton, United Kingdom: Wessex Institute of Technology (WIT Press).
  • Perles Roselló, M.J., & Cantarero Prados, F. (2010). Problemas y retos en el análisis de los riesgos múltiples del territorio: propuestas metodológicas para la elaboración de cartografías multi-peligros. Boletín de la Asociación de Geógrafos Españoles, 52, 245–271. Retrieved from https://www.age-geografia.es/ojs/index.php/bage/article/view/1171
  • Perles Roselló, M. J., & Mérida Rodriguez, M. F. (2010). Patrón territorial y conformación del riesgo en espacios periurbanos. El caso de la periferia este de la ciudad de Málaga. Revista Scripta Nova, XIV. http://dx.doi.org/10.1344/sn2010.14.1635
  • Perles Roselló, M. J., Vías Martínez, J., & Andreo Navarro, B. (2008). Vulnerability of human environment to risk: case of groundwater contamination risk: Environment International. https://doi.org/10.1016/j.envint.2008.08.005
  • Perles, M. J., Cabello, J., López, C., Vallejo, J. A., & Vías, J. M. (1999). El problema de la inundación/ocupación en el Bajo Guadalhorce, efectos de la ocupación humana de un área inundable. Jábega, 81.
  • Petrucci, O., & Pasqua, A. A. (2012). Damaging events along roads during bad weather periods: a case study in Calabria (Italy). Natural Hazards and Earth System Sciences, 12, 365–378.
  • Razavizadeh, S., Solaimani, K., Massironi, M., & Kavian, A. (2017). Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environmental Earth Sciences, 76, 499. https://doi.org/10.1007/s12665-017-6839-7
  • Remondo J, Soto J, González-Díez A et al (2005). Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 66:69–84
  • Rickenmann, D. (1999). Empirical relationships for debris flows. Natural hazards, 19(1), 47-77.
  • Rsavdaroglou, M., Al-Jibaouri, H., Bles, T., & Halman, J. (2018). Proposed methodology for risk analysis of interdependent critical infrastructures to extreme weather events. International Journal of Critical Infrastructure Protection, 21, 57–71.
  • San Millan, E., González-Díez, A., & Fernández-Maroto, G. (2016). Influencia de las precipitaciones en los movimientos de ladera en Cantabria. In J. J. Durán, M. Montes, A. Robador, & A. Salazar, A. (Eds.), Comprendiendo el relieve: del pasado al futuro (pp. 265–272). Madrid: Actas de la XIV Reunión Nacional de Geomorfología.
  • Sauri Pujol, D. (2004). Tendencias recientes en el análisis geográfico de los riesgos ambientales. Áreas, 23. Retrieved from http://revistas.um.es/areas/article/view/117861
  • Saurí Pujol, D., & Ribas Palom, A. (1994). El análisis del riesgo de avenida en las escuelas geográficas anglosajona, francesa y española. Estudios Geográficos, 216, 481–502.
  • Serck, L. (2012). Dangers of river ford crossings, BBC News Online South. 30 April 2012 last updated.http://www.bbc.com/news/uk-england-hampshire-17897637.
  • Simon, A, Downs, P 1995): An interdisciplinary approach to evaluation of potential instability in alluvial channels Geomorphology, Volume 12, Issue 3, June 1995, pp. 215-232.
  • Sortino Barrionuevo, J.F., Mérida Rodriguez, M. F., & Perles Roselló, M. J. (2016). Susceptibilidad de movimientos en masa en infrestructuras viarias. Aplicación a un tramo de la autovía A-7 (circunvalación de Málaga). In J. J. Durán, M. Montes, A. Robador, & A. Salazar (Eds.), Comprendiendo el relieve: del pasado al futuro (pp. 273–282). Madrid: Actas de la XIV Reunión Nacional de Geomorfología.
  • Tibaldi, A., Ferrari, L., & Pasquare, G. (1995). Landslides triggeres by earthquakese and their relations with faults and mountain slope geometry: an example from Ecuador. Geomorphology, 11(3), 215–226.
  • Varnes, D. J. (1978). Slope movement types and processes. In R. L. Schuster & R. J. Krizek (Eds.), Special Report 176: Landslides: Analysis and Control. Transportation and Road Research Board (pp. 11–33). Washington D. C.: National Academy of Science. Retrieved from: http://onlinepubs.trb.org/Onlinepubs/sr/sr176/176-002.pdf
  • Veyret, Y., Beucher, S., & Bonnard, Y. (2005). Risques naturels et territoires Bulletin de l'Association de géographes français, 2005(1), 63–74.
  • Wei Chen, H., & Zhou, Z. (2016). A GIS-based comparative study of DempsterShafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International, 32(4), 367–385. https://doi.org/10.1080/10106049.2016.1140824
  • Yilmaz, I. (2009). Landslide susceptibility ma¬pping using frequency ratio, logistic re¬gression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Computers and Geosciences, 35, 1125–1138.
  • Youssef, A.M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611–623.
  • Zhang, S., Zhang, L. M., Chen, H. X., Yuan, Q., & Pan, H. (2013). Changes in runout distances of debris flows over time in the Wenchuan earthquake zone. Journal of Mountain Science, 10(2), 281–292.
  • Zhao, C., Lin, N., & Fang, D. (2018). Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model. International Journal of Critical Infrastructure Protection, 22, 100–112. https://doi.org/10.1016/j.ijcip.2018.06.002