Análisis y comportamiento espacial de la fractalidad temporal de la precipitación en la España peninsular y Baleares (1997-2010)

  1. Óliver Meseguer-Ruiz
  2. Javier Martín-Vide
  3. Jorge Olcina Cantos
  4. Pablo Sarricolea
Revista:
BAGE. Boletín de la Asociación Española de Geografía

ISSN: 0212-9426

Año de publicación: 2017

Número: 73

Páginas: 11-32

Tipo: Artículo

DOI: 10.21138/BAGE.2407 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: BAGE. Boletín de la Asociación Española de Geografía

Resumen

La fractalidad temporal de la precipitación ‘D’ indica la característica de autosimilitud de la lluvia, el hecho que los sucesos lluviosos se repitan con regularidad a diferentes escalas temporales. Los valores de D se determinan para 44 estaciones de la España peninsular y Baleares, variando entre 1,6039 y 1,4499. Según semestres, los valores de D son más bajos en la mitad cálida del año que en la mitad fría. En el norte los valores de D son mayores, a nivel anual y semestral, mientras que en la fachada oriental y Baleares y en el valle del Ebro son menores, y las mayores diferencias entre los valores de D delos periodos cálido y frío se dan en el norte y en el valle del Guadalquivir.

Referencias bibliográficas

  • AMARO, I.R., DEMEY, J.R., MACCHIAVELLI, R. (2004): Aplicación del análisis R/S de Hurst para estudiar las propiedades fractales de la precipitación en Venezuela. Interciencia, no. 29-11, 617-620.
  • BODRI, L. (1994): Fractal Analysis of Climatic Data: Mean Annual Temperature Records in Hungary. Theoretical and Applied Climatology, no. 49, 53-57.
  • BRESLIN, M.C., BELWARD, J.A. (1999): Fractal dimensions for rainfall time series. Mathematics and Computers in Simulation, no. 48, 437-446.
  • CASANUEVA, A., RODRÍGUEZ-PUEBLA, C., FRÍAS, M.D., GONZÁLEZ-REVIRIEGO, N. (2014): Variability of extreme precipitation over Europe and its relationships with teleconnection patterns, Hydrology and Earth System Sciences, no. 18, 709-725.
  • DE LUIS, M., BRUNETTI, M., GONZALEZ-HIDALGO, J.C., LONGARES, L.A., MARTIN-VIDE, J. (2010): Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005, Global and Planetary Change, no. 74, 27-33.
  • DUNKERLEY, D. (2008): Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting. Hydrological Processes, no. 22, 4415-4435.
  • DUNKERLEY, D.L. (2010): How do the rain rates of sub-events intervals such as the maximum 5-And 15-Min rates (I5 or I30) relate to the properties of the enclosing rainfall event? . Hydrological Processes, no. 24, 2425-2439.
  • GAO, J., XIA, Z. (1996): Fractals in physical geography. Progress in Physical Geography, no. 20 (2), 178-191.
  • GAO, M., HOU, X. (2012): Trends and Multifractals Analyses of Precipitation Data from Shandong Peninsula, China. American Journal of Environmental Sciences, no. 8 (3), 271-279.
  • GARCÍA MARÍN, A.P. (2007): Análisis multifractal de series de datos pluviométricos en Andalucía. Tesis doctoral. Departamento de Ingeniería Rural, Escuela Técnica Superior de Ingenieros Agrónomos, Montes. Universidad de Córdoba.
  • GARCÍA-MARÍN, A.P., JIMÉNEZ-HORNERO, F.J., AYUSO-MUÑOZ, J.L. (2008): Universal multifractal description of an hourly rainfall time series from a location in southern Spain. Atmósfera, no. 21 (4), 347-355.
  • GHANMI, H., BARGAOUI, Z., MALLET, C. (2013): Investigation of the fractal dimension of rainfall occurrence in a semi-Arid Mediterranean climate. Hydrological Sciences Journal, no. 58 (3), 483-497.
  • GNEITING, T., SCHALTER, M. (2004): Stochastic models that separate fractal dimen-Sion and the Hurst effect, Society for Industrial and Applied Mathematics Review, no. 46, 269-282.
  • GONZALEZ-HIDALGO, J.C., LOPEZ-BUSTINS, J.A., ŠTEPÁNEK, P., MARTIN-VIDE, J., DE LUIS, M. (2009): Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the second half of the twentieth century (1951-2000), Inter-national Journal of Climatology, no. 29, 1415-1429.
  • GOODCHILD, M.F. (1980): Fractals and the accuracy of geographical measures. Mathematical Geology, no. 12 (2), 85-98.
  • GOODCHILD, M.F., MARK, D.M. (1987): The Fractal Nature of Geographic Pheno-Mena. Annals of the Association of American Geographers, no. 77 (2), 265-278.
  • GOODESS, C.M., JONES, P.D. (2002): Links between circulation and changes in the characteristics of Iberian rainfall, International Journal of Climatology, no. 22, 1593-1615.
  • GUSEV, A.A., PONOMOREVA, V.V., BRAITSEVA, O.A., MELEKESTSEV, I.V., SULERZHITSKY, L.D. (2003): Great explosive eruptions on Kamchatka during the last 10000, ears: Self-Similar irregularity of the output of volcanic products. Journal of Geophysical Research-Solid Earth, no. 108, art. No. 2126.
  • HASTINGS, H.M., SUGIHARA, G. (1994): Fractals: A User's Guide for the Natural Sciences. Oxford. Ed. Oxford University Press.
  • KALAUZI, A., CUKIC, M., MILLÁ, H., BONAFONI, S., BIONDI, R. (2009): Compa-Rison of fractal dimension oscillations and trends of rainfall data from Pastaza Province, Ecuador and Veneto, Italy. Atmospheric Research, no. 93, 673-679.
  • KHAN, M.S., SIDDIQUI, T.A. (2012): Estimation of fractal dimension of a noisy time series. International Journal of Computer Applications, no. 45 (10), 1-6.
  • KING, M.R. (2005): Fractal analysis of eight glacial cycles from an Antarctic ice core. Chaos, Solitons and Fractals, no. 25, 5-10.
  • KUTIEL, H., TRIGO, R.M. (2014): The rainfall regime in Lisbon in the last 150, ears. Theoretical and Applied Climatology, no. 118 (3), 387-403.
  • LANGOUSIS, A., VENEZIANO, D., FURCOLO, P., LEPORE, C. (2009): Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons and Fractals, no. 39, 1182-1194.
  • LÓPEZ LAMBRAÑO, A.A. (2012): Análisis multifractal, modelación de la precipitación, Tesis doctoral. Facultad de Ingeniería. Universidad Autónoma de Querétaro.
  • MANDELBROT, B.B. (1967): How long is the coast of Britain? Statistical self-Similarity and fractional dimension. Science, no. 156, 636-638.
  • MANDELBROT, B.B. (1976): The fractal Geometry of Nature. New, ork. W.H. Freeman and Company.
  • MARTÍN-VIDE, J., ESTRADA MATEU, J. (1998): Una nueva propuesta metodológica de regímenes pluviométricos estacionales para la Península Ibérica. Nimbus, no. 1-2, 85-92.
  • MARTIN-VIDE, J., LOPEZ-BUSTINS, J.A. (2006): The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula, International Journal of Climatology, no. 26, 1455-1475.
  • MARTÍN-VIDE, J. (2008): La nueva realidad del calentamiento global. Un decálogo del cambio climático. Scripta Nova, Vol. 12, 270 (23).
  • MAZZARELLA, A., RAPETTI, F. (2004): Scale-invariance laws in the recurrence interval of extreme floods: An application to the upper Po river valley (northern Italy). Journal of Hydrology, no. 288, 264-271.
  • MESEGUER-RUIZ, O., MARTÍN-VIDE, J. (2012): Análisis de la fractalidad temporal de la precipitación en Cataluña durante 2010, 2011 en Cambio climático. Extremos e impactos (Rodríguez Puebla, C., Ceballos Barbancho, A., González Reviriego, N., Morán Tejeda, E., Hernández Encinas A., Coords.). Salamanca, Publicaciones de la Asociación Española de Climatología, 539-547.
  • MESEGUER-RUIZ, O., MARTÍN-VIDE, J. (2014): Análisis de la fractalidad temporal de la precipitación en Cataluña, España (2010) . Investigaciones Geográficas, no. 47, 41-52.
  • MORENO, M.C., MARTÍN-VIDE, J. (1986): Estudio preliminar sobre las tendencias de la precipitación anual en el sur de la Península Ibérica: El caso de Gibraltar. II Simposio sobre el Agua en Andalucía, Departamento de Hidrología, Universidad de Granada, 37-44.
  • NINYEROLA, M., PONS, X., ROURE, J.M. (2000): A methodological approach of cli-Matological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, no. 20, 1823-1841.
  • NINYEROLA, M., PONS, X., ROURE, J.M. (2007): Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, no. 89, 195-209.
  • NUNES, S.A., ROMANI, L.A.S., AVILA, A.M.H., COLTRI, P.P., TRAINA, C., CORDEIRO, R.L.F., DE SOUSA, E.P.M., TRAINA, A.J.M. (2011): Fractal-Based Analysis to Identify Trend Changes in Multiple Climate Time Series. Journal of Information and Data Management, no. 2, 51-57.
  • NUNES, S.A., ROMANI, L.A.S., AVILA, A.M.H., COLTRI, P.P., TRAINA, C., CORDEIRO, R.L.F., DE SOUSA, E.P.M., TRAINA, A.J.M. (2013): Analysis of Large Scale Climate Data: How Well Climate Change Models and Data from Real Sensor Networks Agree?; en Proceedings of the IW3C2 WWW 2013 Conference (Schwabe, D., Almeida, V., Glaser, H., Baeza-Yates, R., Moon, S., cords.). IW3C2 2013, Rio de Janeiro, 517-526.
  • OÑATE RUBALCABA, J.J. (1997): Fractal Analysis of Climatic Data: Annual Precipitation Records in Spain. Theoretical and Applied Climatology, no. 56, 83-87.
  • PEITGEN, H.O., JÜRGENS, H., SAUPE, D. (1992): Chaos and Fractals: New Frontiers of Science. Nework, Springer.
  • PELLETIER, J.D. (1997): Analysis and modelling of the natural variability of climate. Journal of Climate, no. 10, 1331-1342.
  • PÉREZ, S.P., SIERRA, E.M., MASSOBRIO, M.J., MOMO, F.R. (2009): Análisis fractal de la precipitación anual en el este de la Provincia de la Pampa, Argentina. Revista de Climatología, no. 9, 25-31.
  • RAIDL, A. (1996): Estimating the fractal dimension, K-2-entropy, and the predictability of the atmosphere. Czechoslovak Journal of Physics, no. 46, 296-328.
  • RANGARAJAN, G., SANT, D.A. (1997): A climate predictability index and its applica-Tions. Geophysical Research Letters, no. 24, 1239-1242.
  • RANGARAJAN, G., SANT, D.A. (2004): Fractal dimensional analysis of Indian climatic dynamics. Chaos, Solitons and Fractals, no. 19, 285-291.
  • REHMAN, S. (2009): Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos, Solitons and Fractals, no. 39, 499-509.
  • REHMAN, S., SIDDIQI, A.H. (2009): Wavelet based Hurst exponent and fractal dimen-Sional analysis of Saudi climatic dynamics. Chaos, Solitons and Fractals, no. 40, 1081-1090.
  • REISER, H., KUTIEL, H. (2010): Rainfall uncertainty in the Mediterranean: Intraseasonal rainfall distribution. Theoretical and Applied Climatology, no. 100, 105-121.
  • RODRÍGUEZ, R., CASAS, M.C., REDAÑO, A. (2013): Multifractal analysis of the rainfall time distribution on the metropolitan area of Barcelona (Spain) . Meteorology and Atmospheric Physics, no. 121, 181-187.
  • RODRÍGUEZ-PUEBLA, C., ENCINAS, A.H., NIETO, S., GARMENDIA, J. (1998): Spatial and temporal patterns of annual precipitation variability over the Iberian Penin-Sula, International Journal of Climatology, no. 18, 299-316.
  • RODRÍGUEZ-PUEBLA, C., NIETO, S. (2010): Trends of precipitation over the Iberian Peninsula and the North Atlantic Oscillation under climate change conditions, International Journal of Climatology, no. 30, 1807-1815.
  • SÁENZ, J., ZUBILLAGA, J., RODRÍGUEZ-PUEBLA, C. (2001): Interannual variability of winter precipitation in northern Iberian Peninsula, International Journal of Climatology, no. 21, 1503-1513.
  • SAHAY, J.D., SREENIVASAN, K.R. (1996): The search for a low-Dimensional characte-Rization of a local climate system. Philosophical Transactions of the Royal Society, no. 354, 1715-1750.
  • SELVI, T., SELVARAJ, S. (2011): Fractal dimension analysis of Northeast monsoon of Tamil Nadu. Universal Journal of Environmental Research and Technology, no. 1 (2), 219-221.
  • SCHROEDER, K., GARCÍA-LAFUENTE, J., JOSEY, S.A., ARTALE, V., BUONGIORNO NARDELLI, B., CARRILLO, A., GAČIĆ, M., GASPARINI, G.P., HERRMAN, M., LIONELLO, P., LUDWIG, W., MILLOT, C., ÖZSOKY, E., PISACANE, G., SÁNCHEZ-GARRIDO, J.C., SANNINO, G., SANTOLERI, R., SOMOT, S., STRUGLIA, M., STANEV, E., TAUPIER-LETAGE, I., TSIMPLIS, M.N., VARGAS-YÁÑEZ, M., ZERVAKIS, V., ZODIATIS, G. (2012): Circulation of the Mediterranean Sea and it's Variability en The Climate of the Mediterranean Region. From the Past to the Future (Pionello, P., Coord.). London, Ed. Elsevier Insights, 187-256.
  • SIVAKUMAR, B. (2001): Is a chaotic multi-Fractal approach for rainfall possible?. Hydrological Processes, no. 15, 943-955.
  • VALDEZ-CEPEDA, R.D., HERNANDEZ-RAMIREZ, D., MENDOZA, B., VALDES-GALICIA, J., MARAVILLA, D. (2003): Fractality of monthly extreme minimum temperature. Fractals, no. 11, 137-144.
  • VENEZIANO, D., FURCOLO, P. (2002): Multifractality of rainfall and scaling of intensity-Duration-Frequency curves. Water Resources Research, no. 38 (12), 1306, doi:10.1029/2001WR000372.
  • VENEZIANO, D., LANGOUSIS, A., FURCOLO, P. (2006): Multifractality and rainfall extremes: A review. Water Resources Research, n° 42, W06D15, doi:10.1029/2005WR004716.
  • VICENTE-SERRANO, S. M., SAZ-SÁNCHEZ, M.A., CUADRAT, J.M. (2003): Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, n° 24, 161-180.
  • WHEELER, D., MARTÍN-VIDE, J. (1992): Rainfall Characteristics of Mainland Europés most Southerly Stations. International Journal of Climatology, no. 12, 96-76.
  • ZHOU, X. (2004): Fractal and Multifractal Analysis of Runoff Time Series and Stream Networks in Agricultural Watersheds, Tesis doctoral, Virginia Polytechnic Institute and State University.