Elementos para una Descomposición Genética del concepto de recta tangente

  1. Abilio Orts Muñoz 1
  2. Salvador Llinares Ciscar 2
  3. Francisco José Boigues Planes 3
  1. 1 IES Guadassuar
  2. 2 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  3. 3 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

Journal:
Avances de investigación en educación matemática: AIEM

ISSN: 2254-4313

Year of publication: 2016

Issue: 10

Pages: 111-134

Type: Article

More publications in: Avances de investigación en educación matemática: AIEM

Abstract

The goal of this research is characterize high school student’s construction of the meanings to tangent line concept. We report the generation of a Genetic Decomposition for the tangent line concept as a high school students’ learning progression. We integrate information from three perspectives: epistemological, curricular, and cognitive. Learning progression is articulated through two characteristics: (i) the integration of local analytical and geometrical perspectives, and (ii) the coordination of Leibnizian conception and the Cartesian conception as a mean to overcome the obstacles derived from the Euclidean conception. Finally, we situated our findings into the debate about the different ways to understand the “learning trajectories” and “learning progressions” constructs in mathematics education.

Funding information

Esta investigación ha recibido el apoyo parcial del Proyecto I+D+i EDU2014-54526-R del Ministerio de Ciencia e Innovación, España.

Funders

Bibliographic References

  • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa, S., Trigueros, M. & Weller, K. (2014). Apos Theory. A Framework for Research and Curriculum Development in Mathematics Education. London: Springer.
  • Artigue, M. (1991). Analysis. En D.O. Tall (Ed.). Advanced Mathematical Thinking (pp. 167-198). Dordrecht, The Netherlands: Kluwer.
  • Battista, M. (2004). Applying cognition based assesment to elementary school students' development of understanding of area and volume measurement. Mathematical Thinking and Learning, 6 (2), 185-204.
  • Battista, M. (2011). Conceptualizations and issues related to Learning Progressions, Learning Trajectories, and Levels of Sophistication. The Mathematics Enthusiast, 8(3), 507-570.
  • Biza, I., Christou, C. & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean Geometry to Analysis. Research in Mathematics Education, 10(1), 53-70.
  • Biza, I., Nardi, E. & Zachariades, T. (2009). Teacher beliefs and the didactic contract on visualisation. For the learning of Mathematics, 29(3), 31-36.
  • Biza, I., Nardi, E. & Zachariades, T. (2010). Teachers' views on the role of visualization and didactical intentions regarding proof. En V. Durand-Guerrier, S. SouryLavergne & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 261-270). Lyon, Francia: INRP.
  • Biza, I. & Zacharides, T. (2010). First year mathematics undergraduates' settled images of tangent line. The Journal of Mathematical Behavior 29(4), 218-229.
  • Boyer, C. (1986). Historia de la matemática. Madrid: Alianza
  • Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques. Recherches en Didactique des Mathématiques, 4(2), 165-198.
  • Canul, E., Dolores. C. & Martínez-Sierra, G. (2011). De la concepción global a la concepción local. El caso de la recta tangente en el marco de la convención matemática. Revista Latinoamericana de Investigación en Matemática Educativa, 14(2), 173-202.
  • Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures: Un exemple concret, celui de la tangente. Recherches en Didactique des Mathématiques, 15(1), 7-47.  
  • Clements, D.G. & Sarama, J. (2004). Learning Trajectories in Mathematics Education. Mathematical Thinking and Learning, 6(2), 81-89.
  • Collette, J. (1991). Historia de las matemáticas. Madrid: Siglo XXI.
  • Conejo, L., Arce, M. & Ortega, T. (2015). Análisis de las justificaciones de los teoremas de derivabilidad en los libros de texto desde la Ley General de Educación. AIEM. Avances de Investigación en Educación matemática, 8, 51-71.
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. En D.O. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht, The Netherlands: Kluwer.
  • González, P. (1992). Las raíces del cálculo infinitesimal en el siglo XVII. Madrid: Alianza.
  • González, M.T. & Sierra, M. (2004). Metodología de análisis de libros de texto de matemáticas. Los puntos críticos en la enseñanza secundaria en España durante el siglo XX. Enseñanza de las Ciencias, 22(39), 389-408.
  • Harel, G. & Tall, D. O. (1991). The general, the abstract, and the generic in advanced mathematics. For the learning of mathematics, 11 (1), 38-42.
  • Maschietto, M. (2008). Graphic Calculators and micro-straightness: Analysis of a didactic engineering. International Journal of Computers for Mathematical Learning, 13, 207-230.
  • Milani, R. & Baldino, R. (2002). The theory of limits as an obstacle to infinitesimal analysis. En A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 345-352). Norwich, Reino Unido: University of East Anglia.
  • Ortega, T. & Sierra, M. (1998). El concepto de derivada: algunas indicaciones para su enseñanza. Revista Interuniversitaria de Formación del Profesorado, 32, 87-115.
  • Páez, R. & Vivier, L. (2013). Teachers' conception of tangent line. The Journal of Mathematical Behavior, 32(2), 209-229.
  • Robles, M.G., Del Castillo, A.G. & Font, V. (2010). La función derivada a partir de una visualización de la linealidad local. En M.M. Moreno, A. Estrada, J. Carrillo & T.A. Sierra (Eds.), Investigación en Educación Matemática XIV (pp. 523-532). Lleida: SEIEM.
  • Roig, A.I., Llinares, S. & Penalva, M. (2012). Different Moments in the Participatory Stage of the Secondary Students' Abstraction of Mathematical Conceptions. BOLEMA, 26(44), 1345-1366.
  • Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
  • Simon, M. (2014). Hypothetical Learning Trajectories in Mathematics Education. En S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 272-275). London: Springer.
  • Simon, M.A., Tzur, R., Heinz, K. & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305-329.
  • Simon, M. A. & Tzur, R. (2004). Explicating the Role of mathematical Tasks in conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning, 6(2), 91-104.
  • Tall, D. O. (1985). Chords, Tangents and the Leibniz Notation. Mathematics Teaching, 112, 48-52
  • Tall, D. O. (1987). Constructing the concept image of a tangent. En J.C. Bergeron, N. Herscovics & C. Kieran (Eds.), Proceedings of the 11th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp.6975). Montreal, Canadá: PME.
  • Tzur, R. & Simon, M. A. (2004). Distinguishing two stages of mathematics conceptual learning. International Journal of Science and Mathematics Education, 2, 287-304.
  • Vinner, S. (1991). The role of definitions in the teaching and learning of Mathematics. En D.O. Tall (Ed.). Advanced Mathematical Thinking (pp. 65-81). Dordrecht, The Netherlands: Kluwer.
  • Vivier, L. (2010). Un milieu théorique pour la notion de tangente dans l'enseignament secondaire. Annales de Didactique et de Sciencies Cognitives, 15, 173-199.
  • Weber, E., Walkington, C. & McGalliard, W. (2015). Expanding Notions of “Learning Trajectories” in Mathematics Education. Mathematical Thinking and Learning, 17(4), 253-272.