Modelos de brotes arbustivos o algas en arquitecturaO cómo replicar un vegetal mediante la Agregación Limitada por Difusión (DLA)

  1. Salvador Serrano Salazar
  2. José Carrasco Hortal 1
  3. Francesc Josep Morales Menárguez
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Revista:
[i2] : Investigación e Innovación en Arquitectura y Territorio

ISSN: 2341-0515

Año de publicación: 2017

Volumen: 5

Número: 1

Tipo: Artículo

DOI: 10.14198/I2.2017.5.01 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Otras publicaciones en: [i2] : Investigación e Innovación en Arquitectura y Territorio

Resumen

En el presente artículo se expone el desarrollo de un método de diseño de estructuras ramificadas del tipo algas marinas o formas arbustivas que se basa en la agregación limitada por difusión (DLA) para definir su geometría. Se ha usado la DLA para reproducir unas reglas de crecimiento convincentes o verosímiles a partir de lo aprendido de visores programables como el NetLogo (Wilensky 1999). En concreto, las herramientas que reproducen la simulación aprendida de NetLogo son el software Grasshopper para generar las geometrías, el plug-in Exoskeleton para obtener superficies envolventes a dichas estructuras alámbricas, y el plug-in Weaverbird para suavizar transiciones entre caras de malla. Ésta última herramienta permite suavizar la malla mediante iteraciones que aumentan o no el número de caras, lo que permite entender algunas teorías sobre transiciones suaves en bifurcaciones de estructuras naturales (Mattheck 1990). Este artículo sirve además para reflexionar acerca de cómo modelos físico cinéticos basados en mecanismos inspirados en la Inteligencia Artificial ayudan a compartir métodos de análisis con otras disciplinas como la cibernética o la dinámica de fluidos o las ciencias sociales y del medioambiente. ¿Por qué puede ocurrir esto? Por el rigor en el lenguaje que todo el rato pretende referirse a poblaciones de individuos, a ciclos de vida, a sistemas multivariables, a reglas de reciprocidad o a pactos con partículas próximas.

Referencias bibliográficas

  • ANASTACIO, Fabricio; SOUSA, Mario C.; SAMAVATI, Faramarz; JORGE, Joaquim A. “Modeling plant structures using concept sketches". En: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering - NPAR 06.
  • BOURKE, Paul. “Constrained Diffusion Limited Aggregation in 3 Dimensions". Computer and Graphics. 2006, vol 30, núm. 4, p. 646-649.
  • BUELOW, P. “A Geometric Comparison of Branching Structures in Tension and in Compression versus Minimal Paths”. 2007.
  • BUSCH, Benjamin; LADURNER, Georg; BAHARLOU, Ehsan; MENGES, Achim. “Adaptive Structure: A Modular System for Generative Architecture”. En: GA2011 – XIV Generative Art Conference.
  • CARPO, Mario. "La desaparición de los idénticos. La estandarización arquitectónica en la era de la reproductibilidad digital". En: ORTEGA, L. (ed.) La digitalización toma el mando. Barcelona: Gustavo Gili, 2009. p. 59-66.
  • Catmull–Clark subdivision surface, 2016. En.wikipedia.org [online]. Recuperado de https://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface
  • CATMULL, Edwin; CLARK, Jim. "Recursively generated B-spline surfaces on arbitrary topological meshes". Computer-Aided Design. 1978, vol 10, núm 6, p. 350-355.
  • Exoskeleton, 2014, D. Piker y D.Stasiuk.
  • FALK, A., BUELOW, P.V. “Combined timber plate and branching column systems–variations and development of system interaction”. In: Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium. 2009. Valencia.
  • FRAZER, John. "Un modelo natural para la arquitectura. La naturaleza del modelo evolutivo". En: ORTEGA, L. (ed.) La digitalización toma el mando. Barcelona: Gustavo Gili, 2009. p. 29-38.
  • FROMM, Jochen. The Emergence of Complexity. Kassel: Kassel Univ. Press, 2004. ISBN: 3-89958-069-9 NERDINGER, Winfried “Frei Otto. Complete Works” Birkhauser, 2005.
  • GAWELL, Ewelina. “Non-Euclidean Geometry in the Modelling of Contemporary Architectural Forms". The Journal of Polish Society for Geometry and Engineering Graphics. 2013, vol 24, p. 35-43.
  • GODIN, Christophe; COSTES, Evelyne; SINOQUET, Hervé. “A Method for Describing Plant Architecture which Integrates Topology and Geometry". Annals of Botany. 1999, vol 84, núm. 3, p. 343-357.
  • GODIN, Christophe. "Representing and encoding plant architecture: A review". Annals of Forest Science. 2000, vol 57, núm. 5, p. 413-438.
  • GORDON J.E. “The Science of Structures and Materials”. Scientific American Library, 1988. Pp 161-174.
  • Grasshopper 3D, 2014, Robert McNeel & Associates.
  • HERMANN, Leonard R. "Laplacian-isoparametric grid generation scheme". Journal of the Engineering Mechanics Division. 1976, vol 105, núm. 5, p. 749-756.
  • HOLLAND, John H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge: MIT Press, 1992. ISBN:0262082136
  • JENCKS, Charles. The Architecture of the Jumping Universe: A Polemic: How Complexity Science is Changing Architecture and Culture. London: Academy Editions, 1997. ISBN: 0-471-97748-9
  • Laplacian smoothing, 2016. En.wikipedia.org [online]. Recuperado de https://en.wikipedia.org/wiki/Laplacian_smoothing
  • MATTHECK, Claus. "Engineering components grow like trees". Mat.-wiss. u. Werkstofftech. 1990, vol 21, núm 4, p. 143-168.
  • MAYORAL, Eduardo. Arquitecturas biosintéticas: la acción arquitectónica a través de la ingeniería de lo vivo y lo no-vivo. Lucena: Recolectores Urbanos, 2015. ISBN: 8494168428
  • NERDINGER, Winfried. Frei Otto, complete works: lightweight construction natural design. Basel: Birkhäuser, 2005. ISBN: 3764372311
  • NetLogo, 1999, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. : U. Wilensky.
  • NetLogo DLA Alternate Linear model, 2005, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. : U. Wilensky.
  • NetLogo DLA Alternate model, 2005, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. : U. Wilensky.
  • NetLogo DLA model, 1997, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. : U. Wilensky.
  • NEUBERT, Boris; FRANKEN, Thomas; DEUSSEN, Oliver. “Approximate image-based tree-modeling using particle flows". ACM SIGGRAPH 2007 papers on - SIGGRAPH 07. 2007, vol 26, núm. 3.
  • NICOLOV POPOV, Nicolay. “How can NetLogo be used in the landscape architectural design process?” Master of Landscape Architecture, Unitec New Zealand, 2007.
  • OKABE, Makoto; OWADA, Shigeru; IGARASHI, Takeo. “Interactive Design of Botanical Trees using Freehand Sketches and Example-based Editing". Computer Graphics Forum. 2005, vol 24, núm. 3, p. 487-496.
  • OTTO, Frei, RASCH, Bodo “Finding form”, Axel Menges 1995. P157-166.
  • PASK, Gordon. " La significación arquitectónica de la cibernética". En: ORTEGA, L. (ed.) La digitalización toma el mando. Barcelona: Gustavo Gili, 2009. p. 15-28.
  • PRUSINKIEWICZ, Przemyslaw; LINDEMAYER, Aristid. The algorithmic beauty of plants. New York: Springer, 1990. 228 p. ISBN 978-1-4613-8476-2
  • QUAN, Long; TAN, Ping; ZENG, Gang; YUAN, Lu; WANG, Jingdong; KANG, Sing Bing. “Image-based plant modeling“. ACM Trans.on Graphics (SIGGRAPH). 2006. vol 25, núm. 3, p. 772–778.
  • RASPALL, Felix; BAÑÓN, Carlos. “vMESH : How to print Architecture?”. En: SIGraDi 2016, XX Congreso de la Sociedad Ibero-americana de Gráfica Digital. (Buenos Aires 9-11 de noviembre de 2016).
  • Rhinoceros 3D, 2012, Robert McNeel & Associates.
  • RIAN, Iasef M.; SASSONE, Mario. “Tree-inspired dendriforms and fractal-like branching structures in architecture: A brief historical overview". Frontiers of Architectural Research. 2014, vol 3, núm. 3, p. 298-323.
  • RIAN, Iasef Md; SASSONE, Mario. “Tree-inspired dendriforms and fractal-like branching structures in architecture: A brief historical overview” Frontiers of Architectural Research, 2014. Vol 3, issue 3, pp 298-323.
  • SRINIVASAN, Vinod; MANDAL, Esan; AKLEMAN, Ergun. "Solidifying Wireframes".En: Proceedings of the 2004 bridges conference on mathematical connections in art, music, and science. Weaverbird, 2012, G. Piacentino.
  • TURCOTTE, Donald L.; PELLETIER, Jon D.; NEWMAN, William I. “Networks with Side Branching in Biology". Journal of Theoretical Biology. 1998, vol 193, núm. 4, p. 577-592.
  • VON BUELOW, Peter. “A Geometric Comparison of Branching Structures in Tension and Compression versus Minimal Paths”. En: Proceeding of IASS 2007. (Venecia 3-6 de diciembre de 2007).
  • WITTEN, Thomas A.; SANDER, Leonard M. "Diffusion-limited aggregation". Physical Review B. 1983, vol 27, núm 9, p. 5686-5697.
  • YAN, Hong-Ping; KANG, Meng Zhen; DE REFFYE, Philippe; DINGKUHN, Michael. “A Dynamic, Architectural Plant Model Simulating Resource-dependent Growth". Annals of Botany. 2004, vol 93, núm. 5, p. 591-602.