¿Las plantas pueden revertir su sexo?

  1. L. Iglesias-Andreu
  2. M. A. Baldo-Romero
  3. J.l. Casas-Martínez
Revista:
Cuadernos de biodiversidad

ISSN: 1575-5495 2254-612X

Año de publicación: 2016

Número: 50

Páginas: 12-16

Tipo: Artículo

DOI: 10.14198/CDBIO.2016.50.03 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Otras publicaciones en: Cuadernos de biodiversidad

Objetivos de desarrollo sostenible

Resumen

The sex determination is an event of great relevance in the life cycle of those plants that reproduce sexually. In recent years we have obtained substantial advances in elucidating the mechanisms involved, and in particular the role of epigenetic factors, in plant sex determination. Taking into account the relevance of this topic especially for dioecious species threatened as Cycads studies have been underwent to determine the basis of epigenetics of sex and to test whether compounds such as the de-metilating agent 5-azacytidine may be involved in sexual expression. This paper reviews the main progress made within this context obtained in Z. furfuraceae as well as cases of reversal of sex in cycads and different plant species.

Referencias bibliográficas

  • Ainsworth, C. (2000). Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany, 86(2): 211–221.
  • Dellaporta, S.L. & Calderón-Urrea, A. (1993). The sex determination process in maize. Science, 94: 1501. Doi. 10.1126/science.7985019.
  • Durand, R. & Durand, B. (1990). Sexual determination and sexual differentiation. Crit. Rev. Plant Sci., 9:295-316.
  • El-Keblawy, A., Lovett Doust, J., Lovell Doust, L. & Shaltout, K. (1996). Gender variation and the evolution of dioecy in Thymelae hisuita (Thymelaeaceae): Can J. Bot., 74:1596-1601.Doi. 10.1139/b97-914.
  • Freeman, D.C., Harper, K.T. & Charnov, E.L.(1980). Sex change in plants: old and new observations and new hypotheses. Oecologia, 47: 222–232. URL: http://www.jstor.org/stable/4216231.
  • Freeman, D.C. & Vitale, J.J. (1985). The influence of environment on the sex ratio and fitness of spinach. Botanical Gazette, 146: 137-142. Doi. 10.1086/337508.
  • Gorelick, R. & Osborne, R. (2002). Inducing sex change and organogenesis from tissue culture in the endangered African cycad Encephalartos woodii (Cycadales, Zamiaceae). South African Journal of Science, 98: 114–117.
  • Gorelick, R. (2005). Theory for why dioecious plants have equal length sex chromosomes. American Journal of Botany, 92: 979 - 984.
  • Grant, S. (1999). Genetics of gender dimorphism in higher plants. In: Gender and Sexual Dimorphism in Flowering Plants. Springer-Verlag Berlin Heidelberg. Pp. 247-274.
  • Hamdi, S., Teller, G. & Louis, J.P. (1987). Master regulatory genes, auxin levels, and sexual organogenesis in the diocious plant Mercurialis annua. Plant Physiol., 85:393-399.
  • Hartwig, Th., Chuckb, G.S., Fujiokac, S., Klempiena, A., Weizbauera, R., Devi Potlurid, D.P.V., Choee, S., Johalf, G.S. & Schulza, B.(2011). Brassinosteroid control of sex determination in maize. PNAS, 108(49): 19814–19819.
  • Holleley, C.E., O'Meally, D., Sarre, S.D, Marshall Graves, J.A., Ezaz, T., Matsubara, K., Azad, B., Zhang, X., & Georges, A.(2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature, 523:79-82.
  • Janousek, B., Siroky, J, & Vyskot, B. (1996). Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Molecular and General Genetics, 250: 483–490.
  • Korpelainen, H. (1998). Labile sex expression in plants. Biological Reviews of the Cambridge Philosophical Society, 73:157-180.
  • Lloyd, D. G.(1975a). Breeding systems in Cotula. III. Dioecious populations. New Phytol, 74: 109–123.
  • Li, S. F., Zhang, G. J., Yuan, J. H., Deng, C.L., Lu, L. D , Gao, W. J. (2015). Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach. Russian Journal of Plant Physiology, 62(5):670-675.
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.
  • Nanami, S., Kawaguchi, H., & Yamakura, T. (2016). Sex Change towards Female in Dying Acer. Annals of Botany, 93(6):733-740.
  • Osborne, R. & Gorelick, R. (2007). Sex Change in Cycads-Cases, Causes and Chemistry. Chapter 21. Reproductive Biology. Mem. NewYork Bot. Gard., 97:335-345.
  • Pierce, L.K. & Wehner, T.C. (1990). Review of Genes and Linkage Groups in Cucumber. Hortscience, 25(6):605-15. http://hortsci.ashspublications.org/content/25/6/605.full.pdf
  • Piskala, A. & Sorm, F. (1964). Collect Czech Chem. Commun, 29: 2060-2076. http://dx.doi.org/10.1135/cccc19642060.
  • Rud, Y. P., Maistrenko, M. I. & Buchatskii, L. P. (2015). Sex identification of the rainbow trout Oncorhynchus mykiss by polymerase chain reaction. Russian Journal of Developmental Biology, 46(2): 65-70.
  • Van Wyk, A.E. & Claassen, M.I. (1981). Sex reversal in Encephalartos umbeluziensis. Veld and Flora, 67:120-122.
  • Vyskot, B. (1999). The role of DNA methylation in plant reproductive development in Sex Determination in Plants. (Eds., C. C. Ainsworth: Sex Determination in Plants. BIOS Scientific Publishers Ltd, Oxford, United Kingdom. Chapter 6. Pp. 101-120.