El papel de sistemas de calculo formal en la comprensión de las matemáticasel caso de la integral definida

  1. Estruch, Vicente D.
  2. Boigues, Francisco J.
  3. Llinares, Salvador
Revista:
Modelling in Science Education and Learning

ISSN: 1988-3145

Ano de publicación: 2010

Número: 3

Páxinas: 3-16

Tipo: Artigo

DOI: 10.4995/MSEL.2010.3106 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Modelling in Science Education and Learning

Resumo

The study presented in this paper belongs to a more general project of research focused in the influence of technology (Tics) in the comprehension of basic nocions in calculus. More particulary, in this paper we will show a set of activities to be developed in MatlabQc in the context of environmental sciences studies and in the constructivism theoretical framework of Action-Process-Object and Scheme (Apos)

Referencias bibliográficas

  • Anton H. (1984). Cálculo y geometría analítica. Ed. Limusa, México.
  • Artigue, M., Douady, R., Moreno, L., Gómez, P. (1995). La enseñanza de los principios del cálculo: problemas epistemológicos, cognitivos y didácticos. Ingeniería didáctica en educación matemática. Grupo Ed. Iberoamericana, 97-140.
  • Artigue, M., Batanero C., Kent, P. (2007). Mathematics thinking and learning at post secondary level. In Fr. Lester (ed.), Second Handbook of research on Mathematiccs teaching and learning. NCTM-IAP; Charlotte, NC, 1011-1045.
  • Asiala M., Brown A. DeVries, D.J., Dubinsky,E. Mathews, D., Thomas, K.(1996). A framework for research and curriculum development in undergraduate mathematics education. Research in collegiate Mathmeatics Education. CBMS issues in mathematics Education, vol.6, 1-32.
  • Baker, B., Cooley, L., Trigueros, (2003). Thematization of the Calculus Graphing. Proceedings of the XXVII annual of the PME, vol. 2, 57-64.
  • Boyer, C.(1949). The History of the Calculus and its conceptual development. Dover, New York.
  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., Schauble, L. (2003). Design Experiments in Educational Research. Educational Researcher, 32(1), 9-13. http://dx.doi.org/10.3102/0013189X032001009
  • Czarnocha, B., Loch, S., Prabhu, V., Vidakovic, D. (2001). The concept of definite integral: coordination of two schemas. Proceedings of the XXV annual of the PME, vol. 2, 297-304.
  • Dubinsky, E. (1991). Reflective abstraccion in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking, Dordrecht: Kluwer Academic Press, 95-123.
  • Dubinsky, E. (1995). ISETL. A programming language for learning mathematics. Communications in Pure and appliade mathematics, 48, 1027-1051.
  • Dunham, W. (2005). The Calculus Gallery. Masterpieces from Newton to Lebesgue. Princenton
  • Ferrara, F. Pratt, D. Y Robutti, O. (2006). The Role and uses of technologies for the teaching of Algebra and Calculus. In A. Gutierrez and Boero (Ed.), Handbooks of Research on the Psychology of Mathematics Education. Past, Present and Future. Sense Publishers, 237-274.
  • Goñi, J.M., Alsina, C., Avila, D. Burgues, C. Comellas, J. Corbalán, F., Garcia Delgado, M.A., Hahn, C., Serra, J. (2000). El curriculum de matemáticas en los inicios del siglo XXI, Ed. Graó.
  • Kent P. y Noss R. (2003). Mathematics in the University education of engineers (A report to the Ove Arup Foundation). London: The Ove Arup Foundation.
  • Kline, M.(1972). Mathematical thought from ancient to modern Times. Oxford University Press.
  • Holton, D. (2001). The teaching and learning of mathematics at university level. An ICMI Study. Dordrecht, The Nertherlands: Kluwer.
  • Larson R.E., Hostetler, R.P., (1989). Cálculo y geometría analítica. Tercera edición, McGraw-Hill, Madrid.
  • McDonald, M. A., Mathews, D., Strobel, K. (2000). Understanding sequences: A tale of two objects. In E. Dubinsky, J. J. Kaput y A. H. Scoienfeld (Eds.), Research in Collegiate Mathematics Education Vol.IV. CBMS Isuues in Mathematics education 8, 77-102.
  • Meel D. E. (2003). Modelos y teorías de la comprensión matemática: comparación de los modelos de Pirie y Kiriem sobe evolución de la comprensión matemática y la teoría APOE. Revista Latioamericana de Investigación en Matemática Educativa, 6(3), 221-272.
  • Orton, A. (1983). Students’ Understanding of integration. Educational Studies in Mathematics, 14, 1-18. http://dx.doi.org/10.1007/BF00704699
  • Piaget, J. (1985). The equilibrium of cognitive structures. Cambridge, M.A. Harvard University Press.
  • Rasslan, S. & Tall, D.(2002). Definitions and imagens for the Definite Integral Concept. Proceedings of the XXVI annual of the PME, vol. 4, 89-96.
  • Steffe, L. & Thompson, P. (2000). Teaching Experiment methodology: Underlying Principles and essen- tial Elements. En A. Kelly, & R. Lesh (eds) Handbook of Research Design in Mathematics and Science Education, Mahwah, NJ: Lawrence Erlbaum Associates Pubs, 267-306.
  • Tall, D. (2000). Cognitive Development in Advanced Mathematics using technology. Mathematics Education Research journal, vol.12, n 3, 210-230 http://dx.doi.org/10.1007/BF03217085
  • Thomas K. (1995). The fundamental theorem of calculus: an investigation into students constructions. Unpublisshed Master doctoral in Purdua University. UMI n 1 9622774.
  • Thomas-Finney (1987). Cálculo y geometría analítica. Vol.1. Sexta edición, Addison-Wesley Iberoamérica. [27] Trigueros, M., (2005). La noción de esquema en Matemática educativa a nivel superior. Educación Matemática, 17 (1), 5-31.
  • Vinner, S. y Tall, D. (1981). Concept image and concept definition in mathematics with special reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. http://dx.doi.org/10.1007/BF00305619